

Tension Control Systems for Light, Medium, and Heavy-Duty Tensioning

AWarner
 Electric

Warner Electric

A full range of tension control systems and components for light, medium and heavy-duty tensioning

Warner Electric Tension Control Systems

Warner Electric offers the most complete line of tensioning products available. Several different types of electric and pneumatic brakes designed specifically for tension applications range in torque ratings from 1 oz.in. through $1785 \mathrm{lb} . \mathrm{ft}$. Controls vary from simple manual adjust models through sophisticated closed loop dancer and load cell systems.
Whether tensioning wire, film, foil, paper, kraft stock, or steel, Warner Electric offers the right tension system for your application. Let our tension specialists help you design the ideal system for your needs.

About This Catalog

This Warner Electric Master Tension Systems Catalog provides the designer with a complete design guide. Matching system component performance characteristics to your application is made easier through the extensive "Design Considerations \& Selection" section and product comparison charts. In addition to selection information, the catalog includes product specifications, dimensions, a glossary of terms, and an application data form. It is the most complete tensioning catalog and design guide available.

Warner capabilities:

- Control technologies from manual operation to closed loop dancer control
- Multiple technologies - Electric, pneumatic and electronic
- Full roll to core control
- Consistent tension, even during flying splices and emergency stops
- Web flutter eliminated to allow better registration control
- Reduction of material waste, downtime and maintenance
- Material flexibility - Thin films, heavy mylar, rolled metals, newsprint, paperboard, laminate foils, wire
- Global distribution
- Local, professional service.

Tension Control Systems

Products for Controlling Tension - Overview 2
Application Examples . 6
System Configurations . 8
Application Data Form 13
Design Considerations and Selection 14
Material Specifications 29
Dancer Arm Sensors . 37
Load Cell Sensors . 38
Tension Controls

Selection Guide . 44
MCS2000 Series Systems 46
Analog Controls . 56
Dancer Controls . 61
Power Supplies and Accessories 65
Dimensions/Enclosures 66

Tension Brakes and Clutches

Selection Guide . 68
TB Series - Basic Tension Brakes 72
ATT Series - Advanced Technology 78
MTB - Modular Tension Brakes 86
Magnetic Brakes and Clutches - M Series 98
Magnetic Particle Brakes and Clutches 106
Pneumatic Brakes
Mistral Brakes . 130
Magnum Brakes . 134
AD Series Brakes . 138
ModEvo Pneumatic Brakes

Brake Discs and Cooling 144
Options . 145
Specifications . 146
Dimensions . 151

Sensors

Ultrasonic Sensors . 152
Bushing Part Numbers 155
Glossary . 156
Conversion Factors . 157
Index . 158

Modular Control Unils

MCS2000 Series

Digital Web Tension Controls
The MCS2000 Web Tension Controller handles all winding, intermediate zone and unwinding applications. MCS2000 easily interfaces to the appropriate clutch/brake driver or motor drive. The digital controller ends the problem of handling large diameter ratios greater than 10:1. See page 46.

- P-I-D parameter programming
- Automatic P-I-D parameter adaption
- Dual outputs in either current or voltage operation modes
- Auto-splice circuit
- Optically isolated I/O
- PLC compatible
- Auto ranging of sensors
- Programmed via hand held programmer or Windows PC program
- Programmable based parameters may be saved on a plug-in memory card
- Multilingual programming
- Usable for unwind/zone/rewind: Electric or Pneumatic Clutches and Brakes, AC, DC, Servo or Stepping Motor Drives.

Analog Controls

TCS Series Analog/Manual Controls
The TCS-200 is a manual analog control for the Electro Disc Tensioning Brake. The control is a constant-current output type that uses a front panel or remote potentiometer to adjust the output. The TCS-200-1/-1H is a manual analog control for any 24 VDC tension brake. It can also accept a 0-10 VDC or $4-20 \mathrm{~mA}$ analog input for adjusting the output. See page 56.

TCS-200

- Input: 24-30 VAC, 50/60 Hz
- Output: 0-270 mA continuous per magnet up to 12 electro disc magnets, adjustable 3.24 amps
- Torque adjust, brake on, run, brake off switch on front panel
- Remote torque adjust, roll follower inputs

TCS-200-1 Selectable Voltage

- Input: 115/230 VAC, $50 / 60 \mathrm{~Hz}$
- Output: 0-24 VDC adjustable, 4.25 amps continuous
- Torque adjust, brake on/off, run switch
- Remote torque adjust, roll follower inputs

TCS-200-1H

- Input: 115/230 VAC, $50 / 60 \mathrm{~Hz}$
- Output: 0-24 VDC adjustable, 5.8 amps continuous
- Torque adjust, brake on/off, run switch
- Remote torque adjust, roll follower, analog voltage or current option

MCS-204

Analog Tension

Control

The MCS-204 is a solid-state control designed for manual or analog input to operate one or two 24 VDC tension brakes. It is designed for use with the MCS-166 power supply. See page 57.

- Input 24-28 VDC @ 3 amps
- Operates from torque adjust control knob on front, remote potentiometer, roll follower, or current loop
- Panel mount with exposed wiring or wall/shelf mount enclosure with conduit entrance.

Dancer Controls

MCS-203 Dancer Control

The MCS-203 automatically controls web tension through a dancer roll and sensor. It has 24 VDC output for use with TB, ATTB \& ATTC, and Magnetic Particle clutches and brakes. See page 61.

- Operates two 24 VDC tension brakes in parallel when using dual MCS-166 power supplies
- Full P-I-D loop adjustment and system gain adjustment for optimum control.
- Available in open frame or enclosed wall/shelf mount enclosure.

TCS-210 Dancer Control

The TCS-210 automatically controls web tension through a dancer roll and position sensor. It outputs to an Electro Disc or other electromagnetic tension brake. See page 62.

- Input: 48 VDC, 1.6 amps continuous, 6 amps intermittent
- Output per magnet: 0-270 mA running, 270-500 mA stopping
- Cabinet mounting enclosure with exposed wiring or wall/shelf mounting enclosure with conduit entrance.

MCS-207 Pneumatic Dancer Control

This control provides automatic web tensioning using a dancer roll and pivot point sensor. See page 63.

- Operates most pneumatic clutches and brakes
- Automatic control for precise tensioning with minimal operator involvement
- Full P-I-D loop and system gain adjustments for optimum control
- Switch selectable output operates E to P transducers (0-10VDC) or I to P transducers ($1-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 20-50 \mathrm{~mA}$) with zero and span adjustments.

TCS-310 Dancer Splicer Control

The TCS-310 is an automatic splicer control that operates two Electro Disc or other electromagnetic tension brakes, one brake controlling and one brake holding, or two tension brakes operating simultaneously. It can also be used as a dual brake control operating up to 24 MTB brake magnets. See page 64.

- Input: 48 VDC, 3.2 amps continuous, 12 amps intermittent
- Output per magnet is 0-270 mA running, 270-500 mA stopping, 0-90 mA holding
- Available as open frame or with NEMA 4 enclosure

Power Supplies

MCS-166

Power Supply Module

The MCS-166 Power Supply Module provides power for the MCS-203, MCS-204, MCS-207, or MCS-208 control modules. See page 65.

- 120V/220V/240 VAC, $50 / 60 \mathrm{~Hz}$
- 24 VDC, 1.5 amp output
- May be connected in parallel for increased current capacity.

TCS-167 Power Supply

The TCS-167 Power Supply provides power for either the TCS-210 or TCS-220 control modules. See page 65.

- $120 \mathrm{~V} / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ operation, switch selectable
- Output: 9 VDC @ 1.5 amps and 48 VDC @ 1.6 amps continuous, 6 amps intermittent
- Internally fused for protection.
- Available in open frame or enclosed wall/shelf mount enclosure.

TCS-168 Power Supply

The TCS-168 Power Supply provides power to either the TCS-310 or 320 dancer tension controls. See page 65.

- Input switch selectable for 120 or 240 VAC, $50 / 60 \mathrm{~Hz}$
- Output 3.2 amps continuous, 12 amps intermittent

Electric
 Brathes of Clutches

TB Series Basic Tension

Annular style 24 VDC tension brakes for light to medium duty unwind tension applications.

- Sizes: $1.7^{\prime \prime}$ to 15.25" diameter
- Torque range: $0.50 \mathrm{lb} . \mathrm{ft}$. to $256 \mathrm{lb} . \mathrm{ft}$.
- Thermal range: . 019 HP to 1.09 HP

ATT Series Advanced Technology

Designed for intermediate web tension ranges. Three size ranges.

- One piece clutch design for easy shaft mounting
- Brakes are flange mounted and the armature is the only rotating member
- Clutch torque ranges 7 to $41 \mathrm{lb} . \mathrm{ft}$. Brake torque ranges from 8 to $62 \mathrm{lb} . \mathrm{ft}$.
- Replaceable friction faces and armature rings.

MTB Series Modular Tension

Modular Tension Brakes (Electro-Disc) are modular caliper type electric brakes used for unwind tensioning. Torque is varied by disc diameter and by changing the number of magnets on the friction disc(s).

- 10", 13", 15" and 20" diameters
- Torque ranges to $1120 \mathrm{lb} . \mathrm{ft}$.
- Thermal capacities to 8 HP
- Brakes rebuildable by changing only friction pads and armature disks.

M Series Permanent

 MagnetPermanent magnet brakes and clutches are ideal for light tensioning applications, such as film and fine wires. They require no external power, have a wide range of torque adjustment, have no friction surfaces to wear, and offer chatter-free torque control even at very low speeds.

- Torque range from 1 oz.in. through $65 \mathrm{lb} . \mathrm{in}$.
- Manual torque adjustment
- Constant torque with varying speeds.

Magnetic Particle

Self-contained magnetic particle clutches and brakes for a wide range of unwind/ rewind applications offer smooth operation at very low speed and electronic control compatibility.

- Torque range from $2 \mathrm{lb} . \mathrm{in}$. through $578 \mathrm{lb} . \mathrm{ft}$.
- Shaft or flange mounting
- Fan cooled in largest sizes.

Pneumatic
 Brahes if Clutchies

Mistral

Mistral Pneumatic Tension Brakes' compact design meets the special needs of the
 corrugating industry.

- Fan cooled for longer life
- Three sizes for multiple applications
- Torque range: $1 \mathrm{lb} . \mathrm{ft}$. to $442.5 \mathrm{lb} . \mathrm{ft}$.
- Thermal capacity to 3.5 HP
- Three sizes from 9" to 16 " diameter. Eases handling small roll ends.

Magnum

Note: Being Discontinued.

AD Series Air Disc Brakes
Note: Being Discontinued

ModEvo
Modular Pneumatic Tension Brake allows for a wide range of tension applications with the modular design. Actuator configuration with different friction material coefficients allow for much greater range capabilities.

- Torque range from $16 \mathrm{lb} . \mathrm{ft}$. to $3180 \mathrm{lb} . \mathrm{ft}$.
- Optional guards and cooling fan assemblies
- Thermal capacities to 18 HP
- Optional high speed armatures

Sensing Devices

Ultrasonic Sensors

- Analog outputs with selectable 0-10V - 4-20mA
- Input voltage 20-30VDC
- Range control zero and span
- Short circuit protected
- 80" max. distance
- Response time 50 mSec

Pivot Point Sensors

The TCS-605-1 and TCS-605-5 pivot point sensors close the feed back loop to the tension control by sensing dancer roll position.

- TCS-605-1 is a single turn potentiometer with a resistance of $1 \mathrm{~K} \Omega$ for normal
 dancer operating ranges within 60° of arm rotation.
- TCS-605-2 is a single-turn potentiometer with a resistance of $5 \mathrm{~K} \Omega$ for normal dancer operating within a 60° range used with $A C$ \& DC drives.
- TCS-605-5 is a five-turn potentiometer with a resistance of $1 \mathrm{~K} \Omega$ for festooned dancer systems, with a 300° rotational range.

Load Cell Sensors

These devices are used in tension systems to provide closed loop feedback of the actual tension on the web.

FM - Foot Mounted

The foot mounted style load cells (used with pillow blocks) provide easy and convenient mounting to the roll that is being measured. It is a strain gauge style unit that is ideal for heavy tension applications.

- Load ratings: 22, 56, 112, 225, 562, 1122, 2248 Ibs.
- Sensitivity (output): $1 \mathrm{mV} / \mathrm{V}$ at nominal load
- Power Supply: 10 to 15 VDC

ES - End Shaft Mounted

The end shaft style load cells mount to the end of the roll that is being measured. It is a LVDT (Linear Variable Differential Transformer) style which can withstand overloads up to 10 times its rated load capacity. There are several models offered: dead shaft (no bearing), live shaft and cantilever where a single load cell can be used to measure the tension on the roll. Some units are powered with DC voltage and other units are powered with AC voltage. The AC units offer a price advantage over the DC.

- Load Ratings: 20, 50, 90, 200, 500
- Sensitivity (output): 3VDC at nominal load
- Power Supply: ± 12 to ± 15 VDC, $\pm 5 \%$

Macza
 DIST. AUTORIZADO

Dancer Control

The dancer control system consists of a power supply, dancer control, pivot point sensor, and controlling element, i.e., tension brake or clutch. Dancers provide the web tension while the control and controlling element stabilize dancer operation for unwind, intermediate zone or rewind tension.

Load Cell Control

Load cell control system consists of the load cell controller, power supply, load cells and controlling element, i.e., tension brake or clutch. Load cells measure the pull force on the web and compare that force to the set point tension in the control. The control increases or decreases the retarding force. Load cells are used for unwind, intermediate zone or rewind tension control.

Analog Control

The analog system consists of a control module, power supply, and a controlling element, i.e., tension brake or clutch. The analog controller provides output proportional to the input signal for use in unwind, intermediate zone or rewind tensioning.

Electronic Control

Electronic control systems are very similar to analog control systems with the exception of using an electronic sensing element such as an ultrasonic or photoelectric sensor. The sensor monitors diameter change in either the unwind or rewind rolls, and provides a corresponding change in output.

Power
Supply/Driver
MCS-2000
PSDRV

Technical Considerations－ Tension Zones

I．A tension zone in a web processing machine is defined as that area between which the web is captured，or isolated．Virtually any machine can be broken down into tension zones，and it is important to do so to properly address maintaining the tension required．

Simple machines，such as rewinders or inspection machines，may have only one zone（see Fig．1）．The primary goal here is to control tension so that the rewound package is accu－ rately wound．Typically，the winder（A） would be a simple line speed motor drive，with tension controlled by a brake system at the unwind（D）．The method of brake control（i．e．：open or closed loop）would be determined by the accuracy demands of the application． For simple diameter compensation，an ultrasonic sensor measuring the diame－ ter of the roll can produce satisfactory results．Greater accuracy may require closed loop feedback，such as from a dancer or load cell．

II．More commonly，a machine will have driven nip rolls in the center，or processing section（see Fig．2）．A sim－ ple slitter／rewinder is an example．In this case，there are two separate ten－ sion zones to deal with and the tension levels may be different in each zone． Different tension levels are possible because the web is captured at the driven nip rolls，thus creating separate and distinct unwind and rewind zones． The driven nip rolls（B）will typically be powered by a motor drive that estab－ lishes machine line speed．Processing tension will be controlled by a brake system at the unwind（D），and a clutch or motor drive will control the winder tension（A）．Again，the method of con－ trol will be dictated by the accuracy of tension control required in each zone．If process tension levels can vary by 10% or greater，a simple open loop brake control system may suffice．More accu－ rate control would require a closed loop system，such as dancer or load cell feedback．Likewise，in the winder zone， open loop control may be sufficiently accurate，or closed loop or taper ten－ sion control may be required．

III．More complex machines will usu－ ally have multiple intermediate zones in addition to the unwind and rewind zones（see Fig．3）．One of the interme－ diate zone drives will typically establish line speed，and the control of drive rolls for the other zones will relate to this drive．In some instances，a simple mas－ ter／slave relationship with a speed dif－ ferential ratio will provide the draw ten－ sion necessary in that zone（i．e．Fig． 3 － $B \& C)$ ．In other cases，this may be
accomplished with closed loop（dancer or load cell）trim．The rewind（A）and unwind（D）would be handled as described in II．Multiple intermediate zones can become very complex，par－ ticularly if high degrees of accuracy are required．As a general rule of thumb， control of any zone should be accom－ plished at one end of the zone only． Control systems at both ends of the zone（for that zone）will generally result in instability of tension levels．

Reliable and accurate control for all system design layouts

Open loop tension control systems provide the least expensive manner to provide a degree of web tension control with the minimal amount of components. Open loop tension control can apply to unwind, intermediate, or rewind tension applications.

Although not as sophisticated as most closed loop tension control systems, a degree of controllability is achieved. Using open loop tension systems, one does sacrifice such things as web storage for acceleration, deceleration, and E-stop conditions. Tension variations during machine start or stop are common with this type of system.

The most common of the various tension systems are generally comprised of the controlled device; i.e., brake, clutch, etc., a simple controller or power supply, and a controlling element, i.e., a potentiometer or some type of analog sensor.

Because of system simplicity, tension is maintained for diameter compensation only in an unwind or rewind system, and no compensation is provided for acceleration, deceleration, Estop or out of round roll conditions. Tension variations of 25% or more may

Open Loop Sustem

be possible during acceleration or deceleration, and 10% or more during running due to out of round rolls or variations in the process machines.

These types of systems lend themselves nicely to applications where tension variations are not a concern, and hold back on a rewind role or scrap
wind up is needed. Operator adjustments are usually required when material tensions or roll diameters are changed initially.

Typical Components

For the simplest of unwind systems, the following components might be used:

- Tension brake coupled to the unwind roll, i.e., ATTB, TB, magnetic particle, or MTB, or pneumatic brake
- Tension controller to provide control current or voltage to the brake, i.e., TCS-200-1, MCS-166/MCS-204, TCS-167/TCS-220, MCS-166/MCS-208
- Control, either the manually adjusted type with a control potentiometer, or through an external potentiometer coupled to a follower arm, or ultrasonic or analog proximity sensor monitoring roll diameter.

System Configurations

Closed Loop Sustem

Closed loop tension systems provide very precise and accurate tension control during steady state running conditions as well as acceleration, deceleration, and E-stop conditions. Because the material web is monitored constantly, either by load cells or from a dancer by position, changes are detected immediately and the controlled device is changed instantaneously to maintain accurate tension control.

The two most common methods of providing closed loop tension control are via load cells that monitor the force on the web directly or via dancers, which provide tension by the load imposed by the dancer roll and dancer position and velocity are monitored, usually by a precision potentiometer. Even the most minute changes are sensed and compensated for in a closed loop system.

Closed loop tension control systems require the least amount of operator involvement during running. Normally, the operator sets only the tension level required for the material being run, once the system has been properly set up and adjusted. Closed loop system controllers compensate for changes in roll diameter and conditions, acceleration, deceleration, and machine variations.

Although closed loop tension control systems offer the most advantageous method of providing web tension control, be it dancer or load cell, there are some limitations to each type of system. In dancer systems, more space is required in the machine to accommodate the dancer arm and rollers, and some method, preferably an air cylinder and regulator, is required for loading. Load cell systems, on the other hand, require less space for mounting, but storage is non-existent for acceleration or deceleration, and balancing of all machine rollers. Web contact is required because of load cells' high sensitivity.

Typical System Components

The typical components of a closed loop tension system are:

- Tension brake coupled to the unwind roll; i.e., TB, MTB, magnetic particle, pneumatic brake
- Controller to provide proper signal to control device; i.e., MCS2000EAC/

MCS2000PSDRV, MCS-166/MCS-203, TCS-167/TCS-210, MCS-166/MCS207

- Controlling element, either load cell or dancer pivot point sensor potentiometer

In general, closed loop tension control is the preferred method in more complex machines where precise tension control is required due to process requirements, such as precise registration, multiple color printing or coating to an exact thickness.

Slitter/Rewinder

Slitter/rewinders process an unlimited number of materials including paper, wires, and foils. Modularity and broad torque capability make Warner Electric the ideal system for the complete range of slitter/rewinder tensioning requirements.

Dual Outpout and Splicer Sustem

Dual output tension control systems, often referred to as splicer controls, offer the user a multitude of options for the way they may be set up and used. Dual output tension controls have the capability of operating both outputs simultaneously from a single input or operating each output alternately, one being controlled by the sensing input and the other in a holding mode. This allows the controls to be used on either zero speed or flying splicers.

Control types include both analog, such as the TCS-310 dancer control and the TCS-320 remote/analog controller, and digital such as the MCS2000 ECA. Dual output controllers work like the single output controllers, except a few more features are included to provide switching between the output channels when operated as splicer controls.

The remote/analog splicer control provides an output proportional to the input. Typically, this is an open loop controller and does not compensate for acceleration, deceleration, or E-stops in the system. In addition, it provides no compensation for out of round roll conditions or variations associated with machine functions. This is the most basic type of controller and, in many cases, requires operator intervention to compensate for changing roll conditions.

The dancer splicer control, TCS310, has additional features to provide automatic compensation for acceleration, deceleration, E-stop, out of round roll conditions and variations in the machine functions. A three-term control loop (P-I-D) is used to provide these functions. Setup adjustments are provided to tune the system for optimum performance and, once set, requires no additional adjustment. With the dancer splicer system, operator involvement during

a run is eliminated, and precise tension control is achieved.

The digital tension controller, MCS2000 ECA, allows the user a multitude of functions for both the type of inputs being used and the outputs for the controlled element. Because of its modularity, the user can tailor the MCS2000 system to specific application requirements. This system can be used as an open loop controller being controlled by a manual potentiometer, a roll follower pot, or some type of analog input sensor, i.e., ultrasonic or photoelectric.

The same controller can also be used with either a dancer or load cell
and an optional input module for closed loop control. By changing the parameters, this is easily accomplished without having to change to a different control.

Depending on application requirements and the control selected, the optimum system for machine function and control can be selected.

Inaczai
DIST. AUTORIZADO
MEX (55) 53632331 QRO (442) 1957260 ventas@industrialmagza.com

Tension Control Systems

System Configurations

Typical Components for Splicer System

For Modular MTB Brakes Only

- Modular tension brake, MTB Series.
- Dual output tension controller, i.e., TCS-310 for dancer system, TCS-320 for remote/analog system, for providing current to brake magnets.
- Power supply, TCS-168, to provide control and brake power.
- Controlling element, i.e., pivot point sensor for dancer system; external pot, remote signal, or analog sensor for remote/analog controller.

For other Brake/Clutch Systems

- Tension brake, clutch, or electronic motor drive, i.e., TB's, MTB's, ATT's, magnetic particles or pneumatic.
- Tension controllers, MCS2000 ECA and appropriate output modules and/or input modules as necessary depending on system type.
- Control element, i.e., dancer potentiometer, load cells, tachometers, or analog sensors, depending on application requirements.

Bag Making Machines

The smooth, consistent tension provided by Warner Electric tension control systems eliminates most reject bags caused by uneven reel tension. On preprinted bags, Warner Electric tension brakes and control systems allow superior registration control to keep the printed area in its optimum position.

Business Forms Press

Unique control circuitry allows Warner Electric tensioning systems to maintain exact web tension for intermittent web processing operations. From the beginning of each roll to its core, operator adjustment is unnecessary, even at the highest production speeds.

Unwind Tension Application Data Form

Warner Electric, Inc.

449 Gardner Street, South Beloit, Illinois 61080
Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: www.warnerelectric.com
Company Name: \qquad Date: \qquad
Address: \qquad
City: \qquad State: \qquad Zip: \qquad
Contact: \qquad Title: \qquad
Phone: \qquad Fax: \qquad
E-mail: \qquad

Type of Equipment: \qquad

SYSTEM DATA:

Please check those that apply.

A. Application

New

ExistingIf existing, what is currently being used?
\qquad
B. Controlling ElementLoad CellDancer
\square StandardFestoonAnalogRoll FollowerSensorOther
\qquad

C. System Type Preference

BrakeDrive SystemCenter WindSurfaceDCOther\qquad

D. Web Motion

\square ContinuousIntermittent
If Intermittent;
Draw length: ___ in inches
Draw time:___ seconds
Dwell time:__ seconds

APPLICATION DATA:

A. Material: \qquad
*Web Width: \qquad inches
*Thickness: \qquad inch, pts, mils
Circle appropriate measure
*Tension:
Pounds/Inch: \qquad pounds

Total Tension: \qquad pounds
B. Linear Speed: \qquad ft./min.
C. Core Diameter: \qquad inches
D. Max Diameter: \qquad inches
E. Full Roll Weight: \qquad pounds
F. Core Weight: \qquad pounds

Machine Parmeters

G. Accel Time:___ seconds
H. Decel Time: \qquad seconds
I. E-Stop Time:__seconds

[^0]
Intermediate Tension Application Data Form
 Warner Electric, Inc.
 449 Gardner Street, South Beloit, Illinois 61080

Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: www.warnerelectric.com

Type of Equipment:

SYSTEM DATA:

Please check those that apply.

A. Application	C. System Type Preference
\square New	\square Brake
\square Existing	\square Clutch
If existing, what is currently being used?	\square Drive System
	\square Center Wind
	\square Surface
B. Controlling Element	$\square \mathrm{AC}$
\square Load Cell	\square DC
\square Dancer	\square Other
\square Standard	
\square Festoon	D. Web Motion
\square Analog	\square Continuous
\square Roll Follower	\square Intermittent
\square Sensor	If Intermittent;
\square Other	Draw length: ___ in inches
	Draw time:__ seconds
	Dwell time:___ seconds
APPLICATION DATA:	Nip Roll Information
	G. Nip Roll Matieral:
A. Material:	H. Nip Roll Diameter:__ inches
*Web Width:___ inches	I. Nip Roll Width:___ inches
*Thickness: __ inch, pts, mils	J. Nip Roll Thickness:__ inches
Circle appropriate measure	K. Nip Roll Weight:__ pounds
*Tension:	
Pounds/Inch:__ pounds	L. Number of Nip Rolls:
Total Tension:_ pounds	M. Nip Roll Contact Pressure:__ pounds
B. Linear Speed:__ft./min.	
C. Core Diameter:__ inches	Machine Parmeters
D. Max Diameter:_inches	N. Accel Time:__ seconds
E. Full Roll Weight:_ pounds	H. Decel Time:__ seconds
F. Core Weight:_ pounds	I. E-Stop Time:__ seconds
	* If additional application data is pertinent, please use second sheet.

Rewind Tension Application Data Form
 Warner Electric, Inc.
 449 Gardner Street, South Beloit, Illinois 61080
 Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: www.warnerelectric.com

Company Name:		Date:
Address:		
City:	- State:	Zip:
Contact:		
Phone:	Fax:	
E-mail:		

Type of Equipment: \qquad

SYSTEM DATA:
Please check those that apply.

A. Application	C. System Type Preference
\square New	\square Brake
\square Existing	\square Clutch
If existing, what is currently being used?	\square Drive System
	\square Center Wind
	\square Surface
B. Controlling Element	$\square \mathrm{AC}$
\square Load Cell	\square DC
\square Dancer	\square Other
\square Standard	
\square Festoon	D. Web Motion
\square Analog	\square Continuous
\square Roll Follower	\square Intermittent
\square Sensor	If Intermittent;
\square Other	Draw length:___ in inches
	Draw time:__ seconds
	Dwell time:___ seconds
APPLICATION DATA:	Machine Parmeters
A. Material:	G. Accel Time:__ seconds
*Web Width:___ inches	H. Decel Time:__ seconds
*Thickness:__ inch, pts, mils	I. E-Stop Time:_ seconds
Circle appropriate measure	
*Tension:	Taper Tension Requirements
Pounds/Inch:_ pounds	Taper Tension Requirments
Total Tension:_ pounds	J. Taper Tension
B Linear Speed. ft/min	$\square \mathrm{No}$
B. Linear Speed:___ft./min.	\square Yes
C. Core Diameter:___ inches	If Yes, what percentage___ \%
D. Max Diameter:_inches	K. Is holding required at stop?
E. Full Roll Weight:__ pounds	\square No
	\square Yes
F. Core Weight:__ pounds	* If additional application data is pertinent, please use second sheet.

Application Data Form Supplemental Information

Warner Electric, Inc.

449 Gardner Street, South Beloit, Illinois 61080
Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: www.warnerelectric.com

Company Name:	Date:	
Address:		
City:	_ State:	Z Zip:
Contact:		Title:
Phone:	Fax:	
E-mail:		

Type of Equipment: \qquad

Additional Application Information

Application Data Form Supplemental Information

Warner Electric, Inc.
449 Gardner Street, South Beloit, Illinois 61080
Phone: 1-800-825-9050 • FAX: 815-389-6678 • E-mail: www.warnerelectric.com

Type of Equipment: \qquad

Additional Application Information

Brakes and clutches used for tensioning (constant slip) have one thing in common. Generally, heat dissipation capacity is the primary criteria for sizing, followed by torque capacity. Beyond this, each has unique sizing requirements that differ greatly. Information on particular Warner Electric tension brakes and clutches start on page 68.

Brakes
 (Unwinds or Payoffs)

Thermal Requirements

Thermal requirements for a brake equals web HP; which is

$$
\text { HP }=\frac{\text { Tension (lbs.) } \times \text { Linear Speed (FPM) }}{33,000}
$$

This energy is constant throughout the unwinding process. Although energy is a function of torque and slip speed, slip speed is at its slowest when torque required is at its greatest (full roll), and slip speed is at its fastest when torque required is at its least (core). All that is needed, then to determine thermal capacity required in an unwind brake is tension and linear speed.

Caution should be taken, however, on machines that run more than one material at different line speeds. All combinations of tensions and line speeds should be checked to insure that brake sizing satisfies the most demanding condition (i.e. - the highest web HP).

Torque Requirements

There are generally three conditions under which a brake must supply sufficient torque: running torque, E-Stop (or emergency stop) torque and controlled stop torque (normal deceleration).

a. Running Torque

This is the torque required to maintain constant tension at any point in the roll being unwound. Since torque is force \times distance, with force being tension and distance being roll radius, then torque must change as radius changes if tension is to remain constant. Moreover, the maximum running torque will be at full roll, since that has the largest radius.

b. E-Stop Torque, Web Break

This is the torque required to stop the roll in the event of a web break or a safety related machine stop. There are basically two types of stop conditions to be considered: web break where only the roll inertia stop time and RPM are major considerations, and controlled E-Stop where stopping is required due to some safety related issue, but web tension must be maintained.

During web break E-Stop controlling tension is not a major concern, but getting the roll stopped in a specified time to minimize spillage. The time frame to stop may be a company specification or an OSHA requirement.

For a web break E-Stop, the torque required is a function of roll inertia, roll RPM and E-Stop time requirements.

$$
\mathrm{T}(\text { torque })=\frac{W R^{2} \times R P M}{308 \times t}
$$

where $\quad \mathrm{T}=$ Torque (lb.ft.)
$t=E-S t o p ~ t i m e ~ r e q u i r e m e n t ~ o f ~ m a c h i n e ~$

Since the roll inertia is greatest when the roll is full, this condition is normally used for calculating the worst-case E-Stop web break torque. RPM can be determined by dividing the linear speed by the roll diameter x pi (3.1416). E-Stop times as short as 2 seconds are not uncommon.

Note that if the control system is open loop (i.e. - ultra-sonic, manual, etc.), maximum E-Stop torque must be obtained by having the S-Stop switch on the machine turn the brake to full on, otherwise the torque available will only be running torque. In the closed loop mode (dancer or load cell), maximum E-Stop torque will automatically be applied.

c. E-Stop Torque, controlled

In a controlled stop, the brake must stop the roll during the time the machine stops, all the while maintaining tension on the unwind roll. This differs from web break E-Stop torque in that the brake must stop the inertia as well as continue to maintain running torque or tension.

$$
T=\frac{W R^{2} \times R P M}{308 \times t}+\text { Maximum Running Torque }
$$

where $\quad \mathrm{T}=$ Torque (lb.ft.)

It should be noted that controlled stops can only be accomplished in the closed loop mode, as feedback is required to maintain tension.

For the same stopping times, the controlled E-Stop will require more torque than the web break E-Stop, due to the additional load of maintaining tension. Controlled E-Stop torque is the worst case as the stop is the much faster than normal deceleration times.

E-Stop whether it be for controlled purposes or web break is generally a set function of the machine. Caution should be made in that the faster the E-Stop requirements, the more torque that is required of the system and the more stress that is placed on the components in the machine.
All categories must be investigated to determine the maximum torque capacity required for the application.

Tension Brakes and Clutches

Design Considerations and Selection

Other Considerations

In some instances, it may be desirable to have a gear ratio from the roll shaft to the brake, with the brake on the higher speed shaft. In addition to providing a torque multiplication equal to the gear ratio, this also serves to reduce the effective inertia that the brake sees, as reflected roll inertia is reduced by the square of the ratio. Note, however, that with brakes that have a specified drag, or minimum torque, that drag torque is also multiplied, which could result in inability to address minimum running torque at or close to core diameter.

Also, it is important to realize that employing a gear ratio DOES NOT reduce the heat dissipation requirement of the brake.

Another instance where a gear ratio may be needed is when any friction type brake is required to run at very low speeds, usually below 50 RPM. Although today's friction materials have been perfected to the point where static and dynamic coefficients or friction are very close, a certain amount of "sticktion" or stick slip phenomena may occur to the extent that precise control of tension may be compromised. Employing a speed-up gear ratio can make the brake operate at a more efficient speed.

Clutches

(Rewinds or Winders)
Although motor drives are the more common choice for winders, clutches can be used quite successfully, and offer a more economical alternative. Typically, the input to the clutch will be a fixed RPM, and can be a take-off from the main machine drive, or an independent motor. RPM input should normally be a least 10% higher than the fastest output. To calculate this, determine the core RPM at fastest line speed, and increase this by at least 10%.
The output of the clutch will start at core RPM, and will gradually decrease as the diameter builds. As in the unwind brake, torque will vary in proportion to the diameter change, but unlike the brake, torque must increase as the diameter builds and the slip speed INCREASES. Slip speed increases because the fixed input RPM doesn't change, but the output RPM keeps decreasing as the roll diameter builds.

Energy dissipation capacity is the most critical sizing criteria in a winder clutch. Creation of heat is highest at full roll, since this is where slip speed AND torque are at their maximum. Maximum heat, or thermal HP, can be found by the following formulae:
$\mathrm{HP}=\frac{\text { Torque(lb.ft.) @ full roll } \times \text { Slip RPM @ full roll } \times 2 \times \text { Pi }}{33,000}$
After the clutch size is selected based on the above thermal calculation, clutch torque capacity should be checked by calculating maximum torque required, which is maximum tension times full roll radius.

Taper Tension

With some materials, taper tension may be required. This is a means by which tension is gradually decreased as the roll diameter builds, and is employed if there is a risk of crushing cores due to build-up of internal pressure within the roll, or if telescoping (slippage to one side) of the wraps might occur. This becomes a function of the control, as the rate of torque increase must be reduced as diameter increases.

In single zone machines, where the unwind brake controls winder tension, taper tension can be handled in a similar fashion.

Control of the clutch can be either open loop (manual adjust or diameter compensation) or closed loop (dancer or load cell), depending upon the degree of precision needed.

For detailed sizing and selection for unwind, intermediate and rewind applications, see sizing selection section on pages 16 through 32.

Design Considerations and Selection

Design considerations and selection can be broken down by the type of system being selected and the function it must perform. Sizing and application for an unwind will be different than that for a rewind. Also, depending on whether it will be for a clutch, or brake or for a drive, certain system parameters will be required.

Additionally, will the system require a simple remote/analog control, or will it require the option of a closed loop dancer or load cell controller? These factors must taken into consideration when sizing the proper system.

No matter which type of system is being considered, certain application parameters are necessary to make the calculations for selecting the proper components. The selection process is straight forward if the necessary data has been obtained.

An application data sheet should be used for each application to insure the necessary data is available when doing the calculations. In many cases, three or four data sheets may be used for a particular machine. Although this may seem excessive, parameters will often vary between unwind, intermediate, or rewind sections of the machine.

Unwind Sizing Tension Brakes

Once the selection data has been obtained, sizing and calculations can be started. An application example is included for both a brake sizing and a drive sizing, showing the comparison of the two type systems.

Application Data

Material: Paper; 30 lb . Basis weight
Tension: 36 lbs . max.
Roll weight: $1,100 \mathrm{lb}$. avg.
Web Width: 24 inches
Linear Speed: 800 ft ./min.
Core diameter: 3.00 inches
Max. roll diameter: 42.00 inches
Machine Acceleration Time: 15 seconds
Machine Deceleration Time: 15 seconds
Machine E-Stop Time: 3.8 seconds
Note: Tension = Material Tension (PLI) X Web Width

Sizing for a Unwind Tension Brake System

1. Energy Rate

Energy Rate $=$ Tension \times Linear Speed
$E R=36 \times 800$
$\mathrm{ER}=28,800 \mathrm{ft}$. Ibs./minute
2. Thermal Horsepower

Thermal HP $=\frac{\text { Energy Rate }}{\mathbf{3 3 , 0 0 0}}$

Note: Constant values in formulas are in bold.

$$
H P=\frac{28,800}{33,000}
$$

$\mathrm{HP}=0.873 \mathrm{HP}$

3. Minimum Roll Speed

Min. Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Max. Roll Diameter (in.) }}$
Min. Roll Speed $=\frac{800 \times \mathbf{3 . 8 2}}{42}$
Min. Roll Speed $=72.76$ RPM
4. Maximum Roll Speed
Max. Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Core Diameter (in.) }}$
Max. Roll Speed $=\frac{800 \times \mathbf{3 . 8 2}}{3}$
Max. Roll Speed $=1,018.67$ RPM
5. Selection Speed

Selection Speed $=\underline{(\text { Max. Roll Speed }- \text { Minimum Roll Speed })}$
10

+ Min Roll Speed
Selection Speed $=\frac{(1,018.67-72.76)}{\mathbf{1 0}}+72.76$
Selection Speed $=\frac{945.91}{10}+72.76$
Selection Speed $=94.591+72.76$
Selection Speed $=167.35$ RPM (Selection Speed)
Ref: Appropriate thermal curves on various catalog pages for possible brake selections (Selection Speed vs. Thermal)

6. Minimum Roll Torque

$$
\text { Minimum Roll Torque }=\text { Tension } \times \frac{\text { Core Dia (in.) }}{\mathbf{2 4}}
$$

Minimum Roll Torque $=36 \times \underline{3}$

Minimum Roll Torque $=36 \times 0.125$
Minimum Roll Torque $=4.5 \mathrm{lb} . \mathrm{ft}$.
7. Maximum Roll Torque
Maximum Roll Torque $=$ Tension $\times \frac{\text { Max. Roll Dia. (in.) }}{24}$

Maximum Roll Torque $=36 \times \underline{42}$

$$
24
$$

Maximum Roll Torque $=36 \times 1.75$
Maximum Roll Torque $=63.00 \mathrm{lb} . \mathrm{ft}$.
Note: Refer to appropriate Running Torque vs. Speed Curves

Tension Control Systems

Design Considerations and Selection
8. Full Roll Inertia, WR ${ }^{2}$

Full Roll Inertia $=\frac{\text { Weight } \times \text { Max. Dia. (in) }}{1152}$
Full Roll Inertia $=\frac{1,100 \times(42)^{2}}{1152}$
Full Roll Inertia $=\frac{1,100 \times 1,746}{1152}$
Full Roll Inertia = 1,940,400
1152
Full Roll Inertia $=1,684.38 \mathrm{lb} . \mathrm{ft}^{2}{ }^{2}$
9. Roll Deceleration Torque (Normal Controlled Stop)

Roll Decel Torque $=\frac{\text { Roll Inertia } \times \text { Min. Roll Speed }}{308 \times \text { Machine Decel Time }}$

+ Max. Running Torque
Roll Decel Torque $=\underline{1,684.38 \times 72.76}+63$
308×15
Roll Decel Torque $=\frac{122,555.49}{4,620}+63$
Roll Decel Torque $=26.53+63$
Roll Decel Torque $=89.53 \mathrm{lb}$. ft.

10. Roll E-Stop Torque, Web Break

Roll E-Stop Torque, $=$
Web Break

Roll Inertia \times Min Roll Speed
Web Machine E-Stop Time Torque,

Roll E-Stop Torque
Web Break

Roll E-Stop Torque, $=122,555.49$
$1,170.4$
Web Break

- This formula can also be used to check tension during acceleration. Using acceleration time of 15 seconds, torque $=$

$$
1,684.38 \times 72.76=26.5 \mathrm{lb} . \mathrm{ft} .
$$ 308×15

Dividing this torque by the radius give tension, so Tension $=\underline{26.5}=15.0 \mathrm{lbs}$.
(42/24)
Since tension requirement is 36 lbs ., acceleration is OK. If acceleration tension exceeds specified tension, a powered unwind should be considered or changing the time requirements.

11. Roll E-Stop Torque, Controlled

Roll E-Stop Torque, $=$ Roll Inertia \times Min Roll Speed
Controlled
$308 \times$ Machine E-Stop Time

+ Max. Running Torque
Roll E-Stop Torque, $=\underline{1,684.38 \times 72.76}+63$
Controlled
308×3.8
Roll E-Stop Torque, $=122,555.49+63$
Controlled
1,170.4
Roll E-Stop Torque, $=104.71+63$
Controlled
Roll E-Stop Torque, Controlled $=167.71 \mathrm{lb} . \mathrm{ft}$.
Refer: Appropriate torque vs. speed curves for selection of possible brakes.

Final brake sizing is determined by thermal vs. selection speed and torque vs. speed for both running and E-Stop conditions. These specifications are found in the brake selection sections starting on page 68.

A cross check of minimum running torque to minimum torque of the unit selected must also be made. If the brake minimum torque value is above the minimum running torque value, then either gearing between the unwind roll and the brake will be required, or a larger core diameter or higher tension value must be used.

Note: Not all types of tension brakes in this catalog may be suited for a particular application. Selecting a brake that is not capable of handling the system requirements will result in premature wear out or failure.

If in doubt about sizing and selection, contact your local Warner Electric Distributor, Warner Sales Representative, or the factory.

Sizing for an Unwind Tension Drive System

Sizing for an unwind tension drive system is similar to a brake system; however, a few additional calculations are required to insure that the proper motor is selected. As before, the same system data is used to make the calculations and selection.

1. Energy Rate

Energy Rate $=$ Tension \times Linear Speed $\times\left\{\frac{\text { Max. Dia.(in.) }}{\text { Min. Dia (in.) }}\right\}$
Energy Rate $=36 \times 800 \times \frac{42}{3}$
Energy Rate $=36 \times 800 \times 14$
Energy Rate $=403,200 \mathrm{ft}$. Ibs./minute
2. Thermal Horsepower

Thermal Horsepower $=\frac{\text { Energy Rate }}{\mathbf{3 3 , 0 0 0}}$
Thermal Horsepower $=\frac{403,200.00}{33,000}$
Thermal Horsepower $=12.22 \mathrm{HP}$
3. Minimum Roll Speed

Min. Roll Speed $=$ Linear Speed $\times \mathbf{3 . 8 2}$
Max. Roll Diameter (in.)
Min. Roll Speed $=\frac{800 \times 3.82}{42}$
Min. Roll Speed $=72.76$ RPM
4. Maximum Roll Speed

Max. Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Core Diameter (in.) }}$
Max. Roll Speed $=\frac{800 \times 3.82}{3}$
Max. Roll Speed $=1,018.67$ RPM
5. Minimum Roll Torque

Minimum Roll Torque $=$ Tension \times Core Dia (in.) 24

Minimum Roll Torque $=36 \times \underline{3}$ 24

Minimum Roll Torque $=36 \times 0.125$
Minimum Roll Torque $=4.5 \mathrm{lb} . \mathrm{ft}$.
6. Maximum Roll Torque

Maximum Roll Torque $=$ Tension $\times \underline{\text { Max. Roll Dia. (in.) }}$
24

Maximum Roll Torque $=36 \times \underline{42}$
Maximum Roll Torque $=36 \times 1.75$
Maximum Roll Torque $=63.00 \mathrm{lb}$. ft.
7. Full Roll Inertia, WR ${ }^{2}$

Full Roll Inertia $=$ Weight \times Max. Dia. $(\text { in })^{2}$
1152
Full Roll Inertia $=\underline{1,100 \times(42)^{2}}$
1152
Full Roll Inertia $=\underline{1,100 \times 1,746}$
1152
Full Roll Inertia $=\underline{1,940,400}$ 1152

Full Roll Inertia $=1,684.38 \mathrm{lb} . \mathrm{ft}^{2}$
8. Acceleration Torque to Start Full Roll

Acceleration Torque $=$ Inertia \times Min Roll Speed $308 \times$ Machine Accel Time + Max. Roll Torque

Acceleration Torque $=\frac{1,684.38 \times 72.76}{308 \times 15}+63$
Acceleration Torque $=\frac{122,555.49}{4,620.0}+63$
Acceleration Torque $=26.53+63.00$
Acceleration Torque $=89.53 \mathrm{lb} . \mathrm{ft}$.
9. Roll Deceleration Torque (Normal Controlled Stop)

Roll Decel Torque $=\frac{\text { Roll Inertia } \times \text { Min. Roll Speed }}{\mathbf{3 0 8} \times \text { Machine Decel Time }}$

+ Max. Roll Torque
Roll Decel Torque $=\frac{1,684.38 \times 72.76}{\mathbf{3 0 8} \times 15}+63$
Roll Decel Torque $=\frac{122,555.49}{4,620}+63$
Roll Decel Torque $=26.53+63$
Roll Decel Torque $=89.53 \mathrm{lb} . \mathrm{ft}$.

10. Roll E-Stop Torque, Web Break

Roll E-Stop Torque, $=$ Roll Inertia \times Min Roll Speed
Web Break $308 \times$ Machine E-Stop Time

Roll E-Stop Torque, $=\underline{1,684.38 \times 72.76}$
Web Break $\quad \mathbf{3 0 8} \times 3.8$

Note: Constant values in formulas are in bold.

Roll E-Stop Torque, $=\frac{122,555.49}{1,170.4}$
Web Break
Roll E-Stop Torque, $=104.71 \mathrm{lb} . \mathrm{ft}$.
Web Break

11. Roll E-Stop Torque, Controlled

Roll E-Stop Torque, $=$ Roll Inertia \times Min Roll Speed
Controlled $\quad \mathbf{3 0 8} \times$ Machine E-Stop Time

+ Max. Running Torque
Roll E-Stop Torque, $=\underline{1,684.38 \times 72.76}+63$
Controlled $\quad \mathbf{3 0 8} \times 3.8$
Roll E-Stop Torque, $=\frac{122,555.49}{1,170.4}+63$
Controlled
Roll E-Stop Torque, = 104.71 +63
Controlled
Roll E-Stop Torque, Controlled $=167.71 \mathrm{lb} . \mathrm{ft}$.
Not only does horsepower have to be calculated on thermal capacity, but horsepower must also be calculated based on both running and E-Stop torque requirements. In many cases, this will dictate a larger horsepower rating than was previously calculated for thermal capacity.

Generally, most AC and DC motors used with a drive, as is the case with most tension systems, produce $3 \mathrm{lb} . \mathrm{ft}$. of torque over the entire speed range. The drives also provide increased current capacity for acceleration and deceleration for short time periods in the range or 150% of nominal ratings. This translates to a torque rating of 4.5 lb . ft. per horsepower.

12. Horsepower Based on Running Torque

Running Horsepower $=\frac{\text { Maximum Running Torque }}{\mathbf{3 . 0}}$
Running Horsepower $=\frac{63.00}{\mathbf{3 . 0 0}}$
Running Horsepower $=21 \mathrm{HP}$

13. Horsepower Based on E-Stop Torque

Normally controlled E-Stop torque will be the worst-case conditions for calculating this horsepower requirement.

E-Stop Horsepower $=\underline{\text { E-Stop Torque, Controlled }}$
3.0×1.5
E-Stop Horsepower $=\frac{167.71}{4.5}$
E-Stop Horsepower $=37.27 \mathrm{HP}$
As can be seen, the horsepower requirements for torque are much higher than those calculated for just thermal capacity. The motor and drive must be selected based on the largest of the three horsepower requirements.

14. Motor HP Comparisons for Thermal and Torque

Thermal HP $=12.22 \mathrm{HP}$
Running Torque HP $=21.00 \mathrm{HP}$
Accel/Decel Torque HP $=19.89 \mathrm{HP}$
E-Stop Torque HP $=37.27$
Based on the largest of the three requirements, in this case the E-Stop requirements of 37.27 HP ; a 40 HP motor and drive system is required.

Note: Often a service factor will be added that will further increase the motor and drive size. This will generally depend on the severity of the application, environment, etc.

Service factors of 1.25 to 2.5 are typical for most applications.
Sizing and selection for different types of unwind systems, whether they be electric or pneumatic brakes, AC or DC drive systems, is basically the same. Though some differences may exist in the sizing and selection processes, most of the differences are revealed in the actual calculations, which are based on the type of system being considered. Acceleration, deceleration, and E-Stop requirements must be calculated for dancer and load cell type systems.
With analog or manual type systems, sizing process differences are not a factor, as the signal providing the control is a function of roll diameter only, and true machine function feedback is provided.
If deceleration and E-Stop capabilities are necessary to maintain accurate tension, then either a dancer or load cell type system must be considered. These are the only type systems that employ the full closed loop feedback needed for deceleration and E-Stop.

Control systems can be selected from the appropriate tables, page 44.

Note: In some cases a reducer or gearbox may be required between the motor or brake and the unwind roll spindle.
When sizing a reducer or gearbox, the speed is increased by the ratio and the torque is reduced by the ratio. Additionally, the efficiency of the reduction must be taken into account as this will slightly increase the required torque.

Note: Constant values in formulas are in bold.

Intermediate Sizing

Intermediate sizing and selection typically involves a roll that retards or pulls the web to create tension.
A brake usually provides the retarding force, while a clutch driven by a constant speed motor or a variable AC or DC drive system provides pull force.

A few additional parameters are considered in addition to those used in sizing and selecting an unwind.

Application Data

Material: Paper; 30 lb . Basis weight
Tension: 36 lbs . max.
Roll weight: $1,100 \mathrm{lb}$. avg.
Web Width: 24 inches
Linear Speed: 800 ft ./min.
Core diameter: 3.00 inches
Max. roll diameter: 42.00 inches
Machine Acceleration Time: 15 seconds
Machine Deceleration Time: 15 seconds
Machine E-Stop Time: 3.8 seconds
Location of Controlling Element: Nip Rolls, S-Wrap
Roller Diameter: 6.00 inches
Roller Width: 30.00 inches
Roller Weight: 100 lbs.
Nip Roll Pressure: 25 Ibs.

Sizing an Intermediate Tension Brake System

1. Nip Roll Speed

Nip Roll Speed $=\frac{\text { Linear Speed } \times 3.82}{\text { Nip Roll Diameter }}$
Nip Roll Speed $=\frac{800 \times 3.82}{6.00}$
Nip Roll Speed $=509.33$ RPM
2. Tension Torque

Tension Torque $=$ Tension $\times \frac{\text { Nip Roll Diameter }}{24}$
Tension Torque $=36 \times \underline{6.00}$
24
Tension Torque $=36 \times 0.25$
Tension Torque $=9.00 \mathrm{lb} . \mathrm{ft}$.
3. Torque Due to Nip Roll Pressure

Nip Roll Torque $=$ Nip Roll Force $\times \frac{\text { Nip Roll Diameter }}{24}$
Nip Roll Torque $=25 \times \underline{6.00}$
24
Nip Roll Torque $=25 \times 0.25$
Nip Roll Torque $=6.25 \mathrm{lb} . \mathrm{ft}$.
Note: Constant values in formulas are in bold.

4. Torque Required for Tensioning

Total Torque $=$ Tension Torque - Nip Roll Torque
Total Torque $=9.00-6.25$
Total Torque $=2.75 \mathrm{lb} . \mathrm{ft}$.

5. Energy Rate Required from Brake

Energy Rate $=2 \times$ Pi \times Nip Roll Speed \times Nip Roll Torque
Energy Rate $=2 \times 3.1415927 \times 509.33 \times 2.75$
Energy Rate $=8,800.59 \mathrm{ft}$. Ibs. $/$ minute
6. Thermal Horsepower

Thermal Horsepower $=\underline{\text { Energy Rate }}$
33,000
Thermal Horsepower $=\underline{8,800.59}$
33,000
Thermal Horsepower $=0.267 \mathrm{HP}$
Initial brake sizing is based on thermal requirements and operating speeds from the appropriate speed vs. thermal curves for the brake type being considered. This information is found in the brake selection section starting on page 68.

7. Normal Deceleration Torque

Deceleration Torque $=\underline{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}$

$$
308 \times \text { Machine Deceleration Time }
$$

+ Total Running Torque
$W^{2}=\underline{N i p}$ Roll Diameter ${ }^{2} \times$ Nip Roll Weight 1152
$W R^{2}=\frac{6^{2} \times 100}{1152}$
$W R^{2}=3.125 \mathrm{lb} . \mathrm{ft} \mathrm{T}^{2}$
Deceleration Torque $=\frac{3.125 \times 509.33}{\mathbf{3 0 8} \times 15}+2.75$
Deceleration Torque $=\frac{1591.66}{4620}+2.75$
Deceleration Torque $=0.345+2.75$
Deceleration Torque $=3.095 \mathrm{lb} . \mathrm{ft}$.

8. E-Stop Torque

E-Stop Torque $=\frac{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}{\mathbf{3 0 8} \times \text { Machine E-Stop Time }}$

+ Total Running Torque
E-Stop Torque $=\frac{3.125 \times 509.33}{308 \times 3.8}+2.75$

$$
\begin{aligned}
& \text { E-Stop Torque }=\frac{1591.66}{1170.4}+2.75 \\
& \text { E-Stop Torque }=1.36+2.75 \\
& \text { E-Stop Torque }=4.11 \mathrm{lb} . \mathrm{ft} .
\end{aligned}
$$

Final brake selection is based on running torque and E-Stop torque, based on torque vs. speed curves. The brake must have sufficient torque capability to handle the application. The appropriate curves for the brake type being considered should be consulted.

Note: Not all brake types will be suitable for a given application.

Sizing an Intermediate Tension Clutch System

Clutch sizing for an intermediate tension system is similar to brake sizing except the clutch input speed is recommended to be 50 to 100 RPM higher than the maximum output speed to assure proper controllability.

Using the same parameters as that for the brake sizing, sizing a clutch is as follows:

1. Nip Roll Speed

Nip Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Nip Roll Diameter }}$
Nip Roll Speed $=\frac{800 \times 3.82}{6.00}$
Nip Roll Speed $=509.33$ RPM

2. Tension Torque

Tension Torque $=$ Tension $\times \frac{\text { Nip Roll Diameter }}{\mathbf{2 4}}$
Tension Torque $=36 \times \underline{6.00}$
24
Tension Torque $=36 \times 0.25$
Tension Torque $=9.00 \mathrm{lb} . \mathrm{ft}$.
3. Torque Due to Nip Roll Pressure

Nip Roll Torque $=$ Nip Roll Force $\times \frac{\text { Nip Roll Diameter }}{24}$
Nip Roll Torque $=25 \times \underline{6.00}$
24
Nip Roll Torque $=25 \times 0.25$
Nip Roll Torque $=6.25 \mathrm{lb} . \mathrm{ft}$.
4. Total Torque Required for Tensioning

Total Torque $=$ Tension Torque + Nip Roll Torque
Total Torque $=9.00+6.25$
Total Torque $=15.25 \mathrm{lb} . \mathrm{ft}$.

5 Clutch Input Speed
Clutch Input Speed $=\frac{k \times \text { Linear Speed }}{\text { Nip Roll Diameter }}$
$k=4.2$ for 50 RPM Slip Difference
$k=4.57$ for 100 RPM Slip Difference
Clutch Input Speed $=\frac{4.57 \times 800}{6}$
Clutch Input Speed $=\frac{3656}{6}$
Clutch Input Speed $=609.33$ RPM
6. Energy Rate

Energy Rate $=2 \times(\mathrm{Pi}) \pi \times$ Total Torque $\times \underset{\text { Difference }}{\text { Slip Speed }}$
Energy Rate $=2 \times 3.1415927 \times 15.25 \times 100$
Energy Rate $=9,581.86 \mathrm{ft}$. Ibs./minute

7. Thermal Horsepower

Thermal Horsepower $=\underline{\text { Energy Rate }}$
33,000
Thermal Horsepower $=\underline{9,581.86}$
33,000
Thermal Horsepower $=0.3 \mathrm{HP}$

8. Acceleration Torque

$$
\begin{aligned}
& \text { Acceleration Torque }= \frac{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}{308 \times \text { Machine Acceleration Time }} \\
&+ \text { Total Running Torque } \\
& \text { Acceleration Torque }= \frac{3.125 \times 509.33}{308 \times 15}+15.25 \\
& \text { Acceleration Torque }= \frac{1591.66}{4620}+15.25 \\
& \text { Acceleration Torque }= 0.345+15.25 \\
& \text { Acceleration Torque }=15.595 \mathrm{lb} . \mathrm{ft.}
\end{aligned}
$$

Final clutch sizing is based on running torque and acceleration torque requirements that are based on slip RPM between input and output. The appropriate torque vs. speed curves should be consulted to insure that the clutch being considered has the necessary torque capacity for the application. See clutch information starting on page 68.

Not every model of clutch will be suitable for a given application.

Note: Constant values in formulas are in bold.

Sizing an Intermediate Tension Drive System

Sizing a tension drive system for an intermediate tension zone is as easy as sizing a clutch or brake. Often a reducer or gear head will be used between the motor and nip rolls being controlled.

Using the same application parameters as that for the previous brake and clutch, sizing a drive is as follows:

1. Nip Roll Speed

Nip Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Nip Roll Diameter }}$
Nip Roll Speed $=\frac{800 \times 3.82}{6.00}$
Nip Roll Speed $=509.33$ RPM

2. Tension Torque

Tension Torque $=$ Tension $\times \frac{\text { Nip Roll Diameter }}{24}$
Tension Torque $=36 \times \frac{6.00}{\mathbf{2 4}}$
Tension Torque $=36 \times 0.25$
Tension Torque $=9.00 \mathrm{lb} . \mathrm{ft}$.
3. Torque Due to Nip Roll Pressure

Nip Roll Torque $=$ Nip Roll Force $\times \frac{\text { Nip Roll Diameter }}{\mathbf{2 4}}$
Nip Roll Torque $=25 \times \underline{6.00}$ 24

Nip Roll Torque $=25 \times 0.25$
Nip Roll Torque $=6.25 \mathrm{lb}$. ft.
4. Total Torque Required for Tensioning

Total Torque $=$ Tension Torque + Nip Roll Torque
Total Torque $=9.00+6.25$
Total Torque $=15.25 \mathrm{lb} . \mathrm{ft}$.
5. Energy Rate

Energy Rate $=2 \times(\mathrm{Pi}) \pi \times$ Total Torque \times Nip Roll RPM
Energy Rate $=2 \times 3.1415927 \times 15.25 \times 509.33$
Energy Rate $=48,803.3 \mathrm{ft}$. Ibs. $/$ minute
6. Thermal Horsepower

Thermal Horsepower $=\frac{\text { Energy Rate }}{33,000}$ 33,000

Thermal Horsepower $=\underline{48,803.3}$
33,000

Thermal Horsepower $=1.48 \mathrm{HP}$
Initial motor selection would be for a 1.5 HP . However, this must be checked to insure that the motor will have sufficient torque capacity to handle the application.

In this application, a ratio between the nip rolls and the motor would be advantageous as it will allow the motor to operate closer to its base speed of 1,750 RPM.
To determine the ratio for the reducer or gear head, assume the maximum motor speed is 1,750 RPM.
7. Reduction Ratio between Motor and Nip Rolls

Reduction Ratio $=\frac{\text { Motor Base Speed }}{\text { Nip Roll Speed }}$
Reduction Ratio $=\frac{1750}{509.33}$
Reduction Ratio $=3.44: 1$
Based on this maximum ratio of 3.44 to 1, a $3: 1$ ratio would be selected for use between the motor and nip rolls. This would be a standard ratio and would be more readily available in comparison to a 3.44:1 ration.

8. Acceleration Torque

Acceleration Torque $=\underline{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}$ $308 \times$ Machine Acceleration Time + Total Running Torque

Acceleration Torque $=\frac{3.125 \times 509.33}{308 \times 15}+15.25$
Acceleration Torque $=\frac{1591.66}{4620}+15.25$
Acceleration Torque $=0.345+15.25$
Acceleration Torque $=15.595 \mathrm{lb} . \mathrm{ft}$.
9. Deceleration Torque

Deceleration Torque $=\underline{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}$ $308 \times$ Machine Deceleration Time

+ Total Running Torque
Deceleration Torque $=\frac{3.125 \times 509.33}{\mathbf{3 0 8} \times 15}+15.25$
Deceleration Torque $=\frac{1591.66}{4620}+15.25$
Deceleration Torque $=0.345+15.25$
Deceleration Torque $=15.595 \mathrm{lb} . \mathrm{ft}$.

Note: Constant values in formulas are in bold.
10. E-Stop Torque

E-Stop Torque $=\underline{\text { Nip Roll Inertia } \times \text { Nip Roll Speed }}$
$308 \times$ Machine E-Stop Time

+ Total Running Torque
E-Stop Torque $=\underline{3.125 \times 509.33}+15.25$
308×3.8
E-Stop Torque $=\frac{1591.66}{1170.4}+15.25$
E-Stop Torque $=1.36+15.25$
E-Stop Torque $=16.61 \mathrm{lb} . \mathrm{ft}$.
Because a $3: 1$ reduction is used between the nip rolls and motor, the reflected torque the motor must produce is reduced by this ratio.

11. Running Torque reflected to Motor with ratio

Motor Run Torque $_{\text {(reflected) }}$	$=\frac{\text { Roll Running Torque }}{\text { Ratio }}$
	Efficiency of Reduction Motor Run Torque $_{\text {(reflected) })}$ $=\frac{15.25}{\frac{3.00}{0.85}}$ Motor Run Torque $_{\text {(reflected) }}$ $=5.98 \mathrm{lb} . \mathrm{ft}$. .

12. Acceleration Torque reflected to Motor with ratio

Motor Accel Torque $_{\text {(reflected) }}=6.12 \mathrm{lb} . \mathrm{ft}$.
13. Deceleration Torque reflected to Motor with ratio

Motor Decel Torque ${ }_{\text {(reflected) }}=\underline{\text { Roll Acceleration Torque }}$
$\frac{\text { Ratio }}{\text { Efficiency of Reduction }}$

Motor Decel Torque $_{\text {(reflected) }}=\underline{15.595}$

$$
\frac{3.00}{0.85}
$$

Motor Decel Torque $_{(\text {reflected })}=6.12 \mathrm{lb} . \mathrm{ft}$.
14. E-Stop Torque reflected to Motor with ratio

Motor E-Stop Torque $_{\text {(reflected) }}$	$=\frac{\text { Roll E-Stop Torque }}{\text { Ratio }}$
Motor E-Stop Torque	
(reflected)	$=\frac{16.61}{\frac{\text { Effiency of Reduction }}{0.00}}$

Motor E-Stop Torque ${ }_{(\text {reflected })}=6.514 \mathrm{lb}$. ft.

The final selection of the motor is based on the torque/HP capabilities. Motors will normally produce $3 \mathrm{lb} . \mathrm{ft}$. of torque per HP over the speed range when used with either an AC or DC drive. Knowing this, horsepower requirements can be based on the various torque requirements and the motor selected accordingly. Additionally, most AC and DC drives provide a 150% overload capability for a limited time for acceleration, deceleration, and E-Stop conditions.
15. Motor HP based on Running Torque

Motor HP = Running Torque
3.00

Motor HP $=\underline{5.98}$
3.00

Motor HP $=1.99 \mathrm{HP}$
16. Motor HP based on Acceleration Torque

Motor HP = Acceleration Torque
4.50

Motor HP $=6.12$
4.50

Motor HP $=1.36 \mathrm{HP}$
17. Motor HP based on Deceleration Torque

Motor HP = Deceleration Torque

Motor HP $=6.12$
4.50

Motor HP $=1.36 \mathrm{HP}$
18. Motor HP based on E-Stop Torque

Motor HP $=\frac{\text { E-Stop Torque }}{4.50}$
Motor HP $=\underline{6.514}$
4.50

Motor HP $=1.45 \mathrm{HP}$
19. Motor HP Comparisons for Thermal and Torque

Thermal HP $=1.48 \mathrm{HP}$
Running Torque HP $=1.99 \mathrm{HP}$
Accel/Decel Torque HP $=1.36 \mathrm{HP}$
E-Stop Torque HP $=1.45$

Note: Constant values in formulas are in bold.

TMagza

Design Considerations and Selection

20. Minimum Motor Horsepower Selection

Minimum Motor Horsepower Selected $=2.00 \mathrm{HP}$.
This would be the absolute minimum motor horsepower that would satisfy the requirements for this application.

Note: The 2 HP motor sized does not take into account any type of service factor for the application. Typically a service factor or 1.5 to 2.5 depending on the severity of the application, environment, hours per day operated, etc. are not unrealistic.

By adding a service factor to the final requirements, you can handle any additional friction, drag, etc. that may not be known and can be handled safely. Additionally, this will also help improve the life of the motor and system as well.

Using a service factor of 1.5 in this case, the motor HP would be $2 \times 1.5=3.00 \mathrm{HP}$ for final motor size selection. This would be much more preferred over using a 2 HP in this particular application.

Rewind Sizing

Rewind tension systems are different from unwind tension systems only in that the material is being rewound on a roll. Many of the calculations are similar. However, rewind tension systems will use either a tension clutch or tension drive.

Selection data required for sizing a tension rewind system is similar to that of an unwind system. The application data form under the rewind section can be used for obtaining the proper data.

For purposes of our application example, the parameters used on the previous unwind and intermediate sections will be used.

Application Data

Material: Paper; 30 lb . Basis weight
Tension: 36 lbs . max.
Roll weight: $1,100 \mathrm{lb}$. avg.
Web Width: 24 inches
Linear Speed: 800 ft //min.
Core diameter: 3.00 inches
Max. roll diameter: 42.00 inches
Machine Acceleration Time: 15 seconds
Machine Deceleration Time: 15 seconds
Machine E-Stop Time: 3.8 seconds
Taper Tension Requirements: None
Note: Tension = Material Tension (PLI) X Web Width

Sizing for a Rewind Tension Clutch System

1. Energy Rate

Energy Rate $=$ Tension \times Linear Speed $\times\left\{\frac{\text { Max. Dia.(in.) }}{\text { Min. Dia (in.) }}\right\}$
Energy Rate $=36 \times 800 \times \frac{42}{3}$
Energy Rate $=36 \times 800 \times 14$
Energy Rate $=403,200 \mathrm{ft}$. Ibs. $/$ minute
2. Thermal Horsepower

Thermal Horsepower $=\frac{\text { Energy Rate }}{33,000}$
Thermal Horsepower $=\underline{403,200.00}$
33,000
Thermal Horsepower $=12.22 \mathrm{HP}$
3. Minimum Roll Speed

Min. Roll Speed $=$ Linear Speed $\times \mathbf{3 . 8 2}$
Max. Roll Diameter (in.)
Min. Roll Speed $=\frac{800 \times \mathbf{3 . 8 2}}{42}$
Min. Roll Speed $=72.76$ RPM

4. Maximum Roll Speed

> Max. Roll Speed $=\frac{\text { Linear Speed } \times 3.82}{\text { Core Diameter (in.) }}$
> Max. Roll Speed $=\frac{800 \times 3.82}{3}$
> Max. Roll Speed $=1,018.67 \mathrm{RPM}$

5. Clutch Input Speed

Clutch Input Speed $=$ Maximum Roll Speed + Slip
Note: Slip Minimum = 50 RPM
Slip Maximum $=100$ RPM
Clutch Input Speed $=1018.67+50$
Clutch Input Speed $=1068.67$ RPM
Note: Clutch input speed must be at least 50 RPM greater than the maximum roll speed to provide a slip difference for controlling the output. If a locked rotor condition is used, the slip torque cannot be controlled, especially at core diameter.

6. Slip Speed at Core

Slip Speed at Core $=$ Clutch Input Speed - Maximum Roll Speed

Slip Speed at Core $=1068.67-1018.67$
Slip Speed at Core $=50$ RPM

7. Slip Speed at Full Roll

$$
\begin{aligned}
& \text { Slip Speed at Full Roll }= \text { Clutch Input Speed } \\
&- \text { Minimum Roll Speed } \\
& \text { Slip Speed at Full Roll }=1068.68-72.76 \\
& \text { Slip Speed at Full Roll }=995.91 \text { RPM }
\end{aligned}
$$

Thermal selection curves for the appropriate clutches should be checked to insure the clutch chosen can handle the thermal requirements at the worst case slip speed. See clutch information starting on page 68.
In this example, a slip speed of 995.91 RPM and a thermal capacity of 12.22 HP would be checked against the curves to insure that the clutch selected would have sufficient capacity to handle these requirements.

8. Minimum Torque at core

Minimum Roll Torque $=$ Tension $\times \frac{\text { Core Dia (in.) }}{24}$
Minimum Roll Torque $=36 \times \frac{3}{\mathbf{2 4}}$
Minimum Roll Torque $=36 \times 0.125$
Minimum Roll Torque $=4.5 \mathrm{lb} . \mathrm{ft}$.

Note: Constant values in formulas are in bold.
9. Maximum Torque at full roll

Maximum Roll Torque $=$ Tension $\times \frac{\text { Max. Roll Dia. (in.) }}{24}$
Maximum Roll Torque $=36 \times \underline{42}$

Maximum Roll Torque $=36 \times 1.75$
Maximum Roll Torque $=63.00 \mathrm{lb}$. ft
Once maximum running torque has been determined, refer the appropriate clutch torque curves to insure that the clutch has sufficient torque at the maximum slip speed. Clutch information starts on page 68.

If the clutch selected initially does not have sufficient torque at the maximum slip speed, the next larger size unit should be checked and selected.

Acceleration torque is the final step that must be considered when selecting a clutch for a rewind application.
Acceleration torque for starting the roll is in addition to the running torque needed to maintain web tension.

Worst case for acceleration torque occurs when the roll is near its maximum roll diameter. If worst-case conditions can be met, there will be no problems when starting the roll at core diameter.

10. Acceleration Torque at Full Roll

$$
\begin{aligned}
\text { Acceleration Torque }= & \frac{\text { Full Roll Inertia } \times \text { Full Roll Speed }}{308 \times \text { Machine Acceleration Time }} \\
& + \text { Maximum Run Torque }
\end{aligned}
$$

Full Roll Inertia $=$ Full Roll Weight \times Max. Roll Dia^{2} (in.) 1152

Full Roll Inertia $=\frac{1,100 \times 42^{2}}{1152}$
Full Roll Inertia $=1,684.375 \mathrm{lb} . \mathrm{ft}^{2}{ }^{2}$
Acceleration Torque $=\frac{1,684.375 \times 72.76}{\mathbf{3 0 8} \times 15}+63.00$
Acceleration Torque $=\frac{122,555.13}{4620}+63.00$
Acceleration Torque $=26.527+63.00$
Acceleration Torque $=89.53 \mathrm{lb} . \mathrm{ft}$.
This torque is required at the maximum slip speed of the clutch to insure the roll can be accelerated while under tension.

As can be seen, the thermal requirements for a rewind clutch are much higher than those required for the same application in an unwind situation.

Generally if the roll build diameter exceeds a 3:1 range, it is more than likely that a clutch will not be sufficient for a rewind application.

If in doubt during the sizing and selection, do not hesitate to contact your Warner Electric Distributor, Warner Electric Sales Representative, or the factory directly.

Sizing for a Rewind Tension Drive System

Sizing a motor for a rewind drive application is almost identical to that of an unwind system.

In this example, tension is constant to simplify sizing. In many applications, taper tension may be required due to the material being processed.

1. Energy Rate

Energy Rate $=$ Tension \times Linear Speed $\times\left\{\frac{\text { Max. Dia.(in.) }}{\text { Min. Dia.(in.) }}\right\}$
Energy Rate $=36 \times 800 \times \frac{42}{3}$
Energy Rate $=36 \times 800 \times 14$
Energy Rate $=403,200.00 \mathrm{ft}$. Ibs./minute

2. Thermal Horsepower

Thermal Horsepower $=\frac{\text { Energy Rate }}{\mathbf{3 3 , 0 0 0}}$
Thermal Horsepower $=\underline{403,200.00}$
33,000
Thermal Horsepower $=12.22 \mathrm{HP}$

3. Minimum Roll Speed

Min. Roll Speed $=$ Linear Speed $\times \mathbf{3 . 8 2}$
Max. Roll Diameter (in.)
Min. Roll Speed $=\frac{800 \times \mathbf{3 . 8 2}}{42}$
Min. Roll Speed $=72.76$ RPM
4. Maximum Roll Speed

Max. Roll Speed $=\frac{\text { Linear Speed } \times \mathbf{3 . 8 2}}{\text { Core Diameter (in.) }}$
Max. Roll Speed $=\frac{800 \times \mathbf{3 . 8 2}}{3}$
Max. Roll Speed $=1,018.67$ RPM
5. Minimum Roll Torque

Minimum Roll Torque $=$ Tension $\times \frac{\text { Core Dia (in.) }}{24}$
Minimum Roll Torque $=36 \times \underline{3}$

24

Minimum Roll Torque $=36 \times 0.125$
Minimum Roll Torque $=4.5 \mathrm{lb} . \mathrm{ft}$.

Note: Constant values in formulas are in bold.

6．Maximum Roll Torque
Maximum Roll Torque $=$ Tension $\times \frac{\text { Max．Roll Dia．（in．）}}{\mathbf{2 4}}$
Maximum Roll Torque $=36 \times \frac{42}{\mathbf{2 4}}$
Maximum Roll Torque $=36 \times 1.75$
Maximum Roll Torque $=63.00 \mathrm{lb} . \mathrm{ft}$.

7．Full Roll Inertia，WR ${ }^{2}$
Full Roll Inertia $=\frac{\text { Weight } \times \text { Max．Dia．（in）}{ }^{2}}{1152}$
Full Roll Inertia $=\frac{1,100 \times(42)^{2}}{1152}$
Full Roll Inertia $=\frac{1,100 \times 1,746}{1152}$
Full Roll Inertia $=\frac{1,940,400}{1152}$
Full Roll Inertia $=1,684.38 \mathrm{lb} . \mathrm{ft}^{2}$
8．Acceleration Torque to Start Full Roll
Acceleration Torque $=\frac{\text { Inertia } \times \text { Min Roll Speed }}{\mathbf{3 0 8} \times \text { Machine Accel Time }}$
＋Max．Roll Torque
Acceleration Torque $=\frac{1,684.38 \times 72.76}{\mathbf{3 0 8} \times 15}+63$
Acceleration Torque $=\frac{122,555.49}{4,620.0}+63$
Acceleration Torque $=26.53+63.00$
Acceleration Torque $=89.53 \mathrm{lb} . \mathrm{ft}$ ．
9．Roll Deceleration Torque（Normal Controlled Stop）

$$
\begin{aligned}
\text { Roll Decel Torque }= & \frac{\text { Roll Inertia } \times \text { Min. Roll Speed }}{308 \times \text { Machine Decel Time }} \\
& + \text { Max. Running Torque }
\end{aligned}
$$

Roll Decel Torque $=\frac{1,684.38 \times 72.76}{308 \times 15}+63$
308×15
Roll Decel Torque $=\frac{122,555.49}{4,620}+63$
Roll Decel Torque $=26.53+63$
Roll Decel Torque $=89.53 \mathrm{lb} . \mathrm{ft}$ ．

10．Roll E－Stop Torque，Controlled
Roll E－Stop Torque，$=\frac{\text { Roll Inertia } \times \text { Min Roll Speed }}{308 \times \text { Machine E－Stop Time }}$ $308 \times$ Machine E－Stop Time ＋Max．Running Torque

Roll E－Stop Torque,$=\underline{1,684.38 \times 72.76}+63$
Controlled
308×3.8
Roll E－Stop Torque，$=\frac{122,555.49}{1,170.4}+63$
Controlled
Roll E－Stop Torque,$=104.71+63$
Controlled
Roll E－Stop Torque，Controlled $=167.71 \mathrm{lb} . \mathrm{ft}$ ．
11．Horsepower Based on Running Torque
Running Horsepower $=\frac{\text { Maximum Running Torque }}{\mathbf{3 . 0}}$
Running Horsepower $=\frac{63.00}{\mathbf{3 . 0 0}}$
3.00

Running Horsepower $=21 \mathrm{HP}$
12．Motor HP based on Acceleration Torque
Motor HP $=\frac{\text { Acceleration Torque }}{4.50}$
Motor HP $=\frac{89.53}{4.50}$
Motor HP $=19.89 \mathrm{HP}$
13．Motor HP based on Deceleration Torque
Motor HP $=\frac{\text { Deceleration Torque }}{\mathbf{4 . 5 0}}$
Motor HP $=89.53$
4.50

Motor HP $=19.89 \mathrm{HP}$
14．Horsepower Based on E－Stop Torque
Normally controlled E－Stop torque will be the worst－case conditions for calculating this horsepower requirement．

E－Stop Horsepower $=\frac{\text { E－Stop Torque，Controlled }}{3.0 \times 1.5}$
E－Stop Horsepower $=\frac{167.71}{4.5}$
E－Stop Horsepower $=37.27 \mathrm{HP}$
15．Motor HP Comparisons for Thermal and Torque
Thermal HP＝12．22 HP
Running Torque HP $=21.00 \mathrm{HP}$
Accel／Decel Torque HP＝19．89 HP
E－Stop Torque HP $=37.27$

Note：Constant values in formulas are in bold．

Tension Control Systems

Design Considerations and Selection

Not only must the motor selected be able to handle the heat dissipation of the application, but it also must be capable of providing the necessary torque to maintain proper tension.

Typically an AC or DC motor controlled by a frequency and/or vector drive, or a regenerative DC drive produces $3 \mathrm{lb} . \mathrm{ft}$. of torque per horsepower over the rated motor speed range.
The HP ratings based on the largest of the 4 conditions of step 15 would be the HP rating selected for the application. In this case, since a 37.27 HP motor is not a standard, the next larger size motor would be selected. This application would require a 40 HP motor and drive system.

In many applications a reduction or gear head would be used between the motor and rewind roll. Often this will reduce the HP rating of the required motor as a torque advantage is realized with the reducer or gear head. It should be noted that the maximum ratio that can be used should never exceed a 30:1 ratio or problems will result at the low-end torque range of the motor possibly.

In the example above, no service factor was taken into account and in many cases a service factor of 1.25 to 2.5 may be considered. This would take into account any unknown friction, bearing drag, etc. in the system.

In this example if a service factor of 1.25 is used, then the motor HP and drive system would be 50 HP . By going to the larger system, motor life and trouble free operation would be realized.

For additional assistance in sizing and selecting a tension rewind drive system contact your Warner Electric Authorized Distributor, Warner Electric Sales Representative, or the factory technical support.

Calculating Web Tensions

For sizing any clutch, brake or drive tension system, tension must be known to perform the calculations. In many cases, the tension ranges for the materials being processed will be known. However, tensions may have to be calculated and/or even estimated for a given application.

To determine an estimated tension value when the actual value is unknown, certain parameters must be known. These are:

1. Material being processed
2. Web width of material, minimum and maximum
3. Paper weights, material thickness or gauge, or wire diameter, or paperboard points
Approximate Tension value $=$ Web Width \times Approximate Material Tension

Note: When dealing with film and foil materials, tension values given are normally pounds per mil per inch of material width.

Approximate Tension Values

The values shown are typically for unwind and intermediate tension systems. Values for rewind systems are normally 1.5 to 2 times higher in many cases, especially when dealing with slitter-rewinders.

Tension Value Charts

Material	Tension Pounds per inch of web width
Paper (Based on 3,000 sq. ft. / ream)	
15 lb .	0.50 lb ./in.
20 lb .	$0.67 \mathrm{lb} . / \mathrm{in}$.
30 lb .	1.00 lb ./in.
40 lb .	1.33 lb ./in.
50 lb .	1.67 lb ./in.
60 lb .	2.00 lb ./in.
70 lb .	2.33 lb ./in.
80 lb .	$2.67 \mathrm{lb} . / \mathrm{in}$.
100 lb .	3.33 lb ./in.
120 lb .	4.00 lb ./in.
140 lb .	$4.67 \mathrm{lb} . / \mathrm{in}$.
160 lb .	5.33 lb ./in.
180 lb .	6.00 lb ./in.
200 lb .	6.67 lb ./in.
Paperboard (Based on points thickness)	
8 pt .	3.00 lb ./in.
10 pt .	3.75 lb ./in.
12 pt .	4.75 lb ./in.
15 pt .	5.63 lb ./in.
20 pt .	6.00 lb ./in.
25 pt.	9.38 lb ./in.
30 pt .	11.25 lb ./in.
35 pt .	$13.13 \mathrm{lb} . / \mathrm{in}$.
40 pt .	15.00 lb ./in.
45 pt .	16.88 lb ./in.
50 pt .	$18.75 \mathrm{lb} . / \mathrm{in}$.

Note: Typical tension is 0.375 Ibs./point

Material	Tension Pounds per mil of web width
Films and Foils	
Aluminum Foil	0.5 to $1.5 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$. Typically 1.0 lb ./mil./in.
Acetate	$0.50 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{inch}$
Cellophane	0.50 to $1.0 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$. Typically $0.75 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$.
Polyester	0.50 to 1.0 lbs //mil./in. Typically $0.75 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$.
Polyethylene	0.25 to $0.3 \mathrm{lbs} . / \mathrm{mil} /$ /in.
Polypropylene (Non-orientated)	0.25 to $0.3 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$.
Propylene (Oriented)	$0.5 \mathrm{lbs} . / \mathrm{mil} /$ /in.
Polystyrene	$1.0 \mathrm{lbs} . / \mathrm{mil}$./in.
Saran	0.05 to 0.2 lbs ./mil./in. Typically 0.1 lb ./mil./in.
Vinyl	0.05 to $0.2 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$. Typically $0.1 \mathrm{lb} . / \mathrm{mil} . / \mathrm{in}$.
Mylar	$0.5 \mathrm{lbs} . / \mathrm{mil} / \mathrm{/in}$.
Oriented Propylene	$0.5 \mathrm{lbs} . / \mathrm{mil}$./in.
Metals and Steels	
Beryllium Copper	8.0 lbs./mil./in.
Titanium, Tungsten, High Carbon Steel, and Stainless Steel	$8.0 \mathrm{lbs} . / \mathrm{mil} . / \mathrm{in}$.
Low Carbon Steels	See Chart
Non-Ferrous Metals	See Chart

Thickness	Low Carbon Steels (Ibs./in. width)	Non-Ferrous Metals (Ibs./in. width)
0.005	30.00	22.00
0.010	65.00	42.00
0.015	70.00	59.00
0.020	85.00	70.00
0.025	105.00	80.00
0.030	120.00	90.00
0.035	134.00	98.00
0.040	145.00	105.00
0.045	158.00	110.00
0.050	170.00	115.00
0.055	180.00	120.00
0.060	190.00	125.00
0.065	195.00	130.00
0.070	202.00	135.00
0.075	206.00	139.00
0.080	210.00	142.00
0.085	212.00	146.00
0.090	215.00	150.00
0.095	217.00	152.00
0.100	219.00	155.00
0.110	220.00	
0.120	220.00	
0.130	218.00	
0.140	214.00	
0.150	210.00	

Note: These values are for actual tensions; typically they are run at less.

Wire Tensions

AWG Wire Size	Aluminum Wire Tension Pounds per strand of wire	
30 AWG	0.35	1.2
28 AWG	0.69	2.2
26 AWG	1.10	3.3
24 AWG	1.75	5.0
22 AWG	2.77	7.5
20 AWG	4.42	11.5
18 AWG	7.00	17.0
16 AWG	11.20	26.0
14 AWG	17.80	38.0
12 AWG	28.30	56.5
10 AWG	44.80	81.0
8 AWG	71.40	110.0
6 AWG	113.00	175.0
4 AWG	180.00	278.0

Note: In many cases, only hold back is required rather than full tensioning where there is a permanent set in the material. The actual tension values times a factor of 0.25 to 0.50 is sufficient to provide the necessary holdback.

Material Densities

When the weights of the unwind or rewind rolls are not known, they can be estimated by knowing the roll width, core diameter, maximum roll diameter, material type and material density.

Roll weights can be obtained by looking at the process tracking tags found on most rolls. When this is not possible, an estimated weight can be calculated.

Roll weight must be known to calculate roll inertia for acceleration, deceleration, and E-stop requirements for system selection.

Roll weight $=$ Roll Volume \times Material Density
Volume $=$ Max Roll Diameter ${ }^{2} \times$ Roll Width $\times 0.00045$
Note: Maximum Roll Diameter and Roll Width are in inches.

Application Example

Determine the estimated roll weight of a 42 inch diameter roll, 24 inches wide, paper.
Volume

$$
=42^{2} \times 24 \times 0.00045
$$

$$
=19.05 \text { cubic feet }
$$

Weight $=$ Volume \times Density

$$
=19.05 \times 57 \text { (Density of Paper) }
$$

= 1,086 pounds

Note: This does not take into account the core spindle shaft weight. If an extremely accurate weight of all components is necessary, core spindle shaft weight can be calculated separately and added to the roll weight.

Material Densities

Material	Typical Density (lbs./ft. ${ }^{3}$)
Papers, Films, and Foils	
Paper	$57.00-75.00$
Paperboard	88.00
Acetate	81.50
Aluminum Foil	45.00
Cellophane	57.00
Polyester	78.00
Polyethylene	57.50
Polypropylene	56.00
Polystyrene	66.00
Vinyl	86.00
Saran	107.50
Mylar	112.00
Metals	
Aluminum	165.00
Beryllium Copper	514.00
Copper	$542.00-576.00$
Tin	407.50
Titanium	281.00
Tungsten	$1,224.00$
Steel (typical)	$483.00-495.00$

Additional Design Considerations

Considerations additional to the sizing process for the controlling device (brakes or clutches) are discussed below.

Torque

Although torque calculations are similar for unwind, intermediate and rewind tension applications, both minimum and maximum torque values of the controlling device must be considered for the application to be successful.
Minimum torque is the amount of force the controlling device must apply to maintain constant tension in the web. If the minimum torque exceeds the minimum torque necessary to maintain web tension, the system cannot control properly, web tension will increase, and waste may result.
Maximum torque is the force provided by the controlling device to maintain proper web tension in worst-case conditions. If maximum torque is less than that required by the application, tension will be less than desirable and may result in poor process.
E-Stop torque is the force the controlling device can apply during machine E-Stop conditions. This E-Stop torque depends on the type of controlling device used and the control system employed. Not all control systems or controlling devices, i.e., brakes, clutches, etc., have E-Stop capabilities. If E-Stop requirements are mandated by the application, then both the controller system and controlling device must have the capabilities to provide this.
If the controlling device cannot produce the necessary torque, then web spillage will occur and damage to machinery may result.
The controlling device must be large enough to cope with all application torque requirements. Even though most brakes and clutches have both static and dynamic torque capabilities, dynamic torque is more important than static torque in tension applications.

Heat Dissipation

When a clutch, brake, or motor operates in a slipping mode or the motor is generating torque, heat is built up as a result of the mechanical energy being converted to thermal energy. The controlling device must be able to dissipate this (heat) energy. If it doesn't, it will fail, either electrically, mechanically, or both.
The heat dissipation capacity of the controlling device must always exceed the heat produced by the application.
Environmental considerations must also be analyzed to insure proper operation. High ambient temperature, enclosures surrounding the controlling device limiting the airflow, or marginal heat dissipation capacity have to be considered.
Some controlling devices may need additional cooling with fans or blowers to increase air flow.
The controlling device must be selected properly to handle the application's heat dissipation. This is probably one of the most critical factors in sizing and selection.

Speed

Brakes, clutches, and motors have minimum and maximum speed ranges. Applications must always be checked to insure that the requirements fall within the capabilities of the controlling device.
Failing to operate the controlling devices within their specifications may result in the application failing to meet the specified requirements; failure of the components mechanically and electrically, or even may result in serious damage or injury.
Selection RPM is used to properly size a unit so that over sizing is minimized and an optimum system can be specified.

Inertia

By definition, inertia is that property of a body that makes it continue in the state of motion or rest in which it may be placed until acted upon by some force.
Inertia is an important factor in tensioning applications because it has an effect in the sizing of the controlling device during acceleration, deceleration, and E-Stop conditions.
Failure to consider inertia during the calculations can definitely result in a system being undersized and unable to provide optimum performance. This may result in instability at start up and overrunning during deceleration and stopping. The end result in all cased will be poor product quality and, usually, excessive scrap.
With the exception of intermediate tension applications and analog control systems, inertias are constantly changing in unwind and rewind applications. Worst-case inertia calculations are normally used for sizing and selecting purposes.

Charts

Charts are provided for all clutches and brakes included in the catalog. They provide a means of selecting the correct controlling device for a given application. Performance charts and product specifications for brakes and clutches start on page 68.
The charts provide thermal vs. selection speed data, the means of selecting the unit based on thermal requirements.
Never select a controlling device whose thermal limits are near or equal to those of the application. The next larger size unit should always be considered or the factory should be consulted for additional options.
Selection charts are also provided for running torque vs. speed and E-Stop torque vs. speed. These charts provide a means of checking the preliminary unit selection based on thermal requirements and torques.
The appropriate charts must be used in the sizing and selection process.

Additional Calculations

Additional calculations can be made to determine roll stop time, web pay out during stop, and web storage requirements. These become important when using a dancer or load cell control system to ensure optimum performance and to insure the controlling element selected will do the job.

1. Normal Roll Deceleration Stop Time

Normal Roll Decel Stop time $=$
WR $^{2} \times$ Minimum Roll RPM
$308 \times$ [Brake Dynamic Torque available -
Maximum Running Torque (Full Roll)]
2. Roll E-Stop Time

Roll E-Stop Time $=$
$W^{2} \times$ Minimum Roll RPM
$308 \times$ [Brake Dynamic Torque available -
E-Stop Torque Required]
Determine web payout during normal deceleration stop and E-Stop conditions to determine the amount of web spillage. The calculations that follow may signal a need to upsize the brake or improve the dancer design.

1. Determining Web Payout during normal deceleration

Web Payout during normal deceleration =

> Linear Speed (FPM) x Roll Stop time (deceleration)

120
2. Determining Web Payout during E-Stop

Web Payout during E-Stop =
Linear Speed (FPM) \times Roll E-Stop time
120
3. Machine Web Draw during normal deceleration

Machine Web Draw during deceleration = Linear Speed (FPM) \times Machine Decel time 120
4. Machine Web Draw during E-Stop

Machine Web Draw during E-Stop $=$ $\frac{\text { Linear Speed (FPM) } \times \text { Machine E-Stop time }}{\mathbf{1 2 0}}$
Once these values are calculated, web spillage can be determined and the brake selected will be found adequate or its size will have to be increased. Another alternative is dancer design improvements. See dancer design section for calculations and suggestions.
Web Spillage = Web Payout of Roll - Machine Web Draw This should be calculated for both normal deceleration and E-Stop calculations.

Note: If the numbers calculated are negative, then no payout or spillage will occur.
Often during E-Stop, web spillage will be evident from the above calculations. If this is not a concern and the brake selected can handle the heat dissipation and torque requirements for running and deceleration, the controlling element has been correctly selected.
It may be necessary with E-Stop requirements, to repeat calculations for torque and brake selection until a controlling element can be selected that will match all the parameters.

Selection Conclusions

No matter which type of tension system is selected, unwind, intermediate, or rewind, this is intended as a general sizing selection guide that will probably cover the vast majority of applications. Some instances will surely be encountered where the sizing and selection covered in the previous pages may not apply. In these cases, your local Warner Electric Representative can provide the necessary guidance and assistance to correctly size and select a tension control system.
The sizing and selection process is quite straightforward, although some work is involved. In summary, sizing and selection can be broken down into three simple steps:

1. Selection of the controlling device, i.e., Brake or clutch
2. Controller, Power Supply, etc., i.e., Remote/Analog, Dancer, Load Cell, or Splicer
3. Input Sensing Element, i.e., Dancer Pot, Load Cell, Analog sensor
With the wide variety of tension products available, Warner Electric can offer complete tension packages for almost any application encountered. Because of its vast experience and knowledgeable professionals, Warner Electric can solve your tensioning needs.

Web Storage

A load cell does not provide material storage for machine acceleration. As the machine draws material during the acceleration period, it is pulling against the inertia of the unwind roll. If the roll is large, the acceleration rate is high, and the material is light, the web may break. Therefore, it may be necessary to provide storage in the web path to release material as the roll comes up to speed. Another option would be to use a drive to help bring the roll up to speed. For further information or assistance, please contact your Warner Electric Distributor or Warner Electric Representative.

Note: Constant values in formulas are in bold.

Tension Control Systems

Designing the Optimum Dancer Storage System

For closed loop dancer controlled systems, the actual web tension is determined by the downward pressure of the dancer roll or by the loading on the dancer on the web. Consequently, special attention should go into the design of the dancer arm system to provide both consistent tension and adequate web storage for optimum web stop performance.

Load Cell vs. Dancer

Deciding between a load cell and a dancer system requires consideration of many inter-related factors. Sometimes a load cell control is selected when the material being tensioned is not flexible and will not easily wrap around a dancer roll. For example, medium to heavy gauge metals are often tensioned with load cell systems.
Load cell systems can also be selected because of space limitations in the application, or because they are easier to retrofit to existing applications. In retrofit applications, precision balance or rollers may be required if line speeds are greater than 650 feet per minute.
Dancer tension control is still the preferred method of control in many applications. For example, high speed printing applications may require the "forgiveness" of a dancer system to take-up or release material during the dynamically unstable conditions seen at the unwind or rewind roll. The reasons for unstable conditions include fast decelerations or accelerations, out-of-round rolls, and flying splices. A dancer system should be considered when speeds are high and tension control requires extreme precision.

Dancer Roll Design and Construction

The dancer roll and control arms are the heart of this tension control system. Dancer construction is simple, but very important.
For optimum performance, the dancer should be a thin walled tubing and be loaded by massless, low friction air cylinders. A rolling diaphragm device is most commonly used. For greatest accuracy, the wrap on the dancer roll should be exactly 180 degrees.
Anything attached to the dancer for loading will detract from the dancer's ability to act as a buffer and should be made as light and (in the case of air cylinders) efficient as possible.

Construction of Dancer Arms for Webs

Dancer arms should utilize boxed construction to provide rigidity so that the web does not cause the arms to twist. This also insures that the web will track properly over the dancer roller.
The pivot point should be bearing mounted so the dancer arm can move freely. The dancer roller should also be bearing mounted and the bearings should be small in diameter and as frictionless as possible.
This will help reduce the bearing drag and friction changes which affect good tensioning. Standard feed conveyor rollers and bearings are usually sufficient.

Construction of Dancer Arms for Wire

Wire dancers usually employ a single arm. The pivot point and dancer roller should both be bearing mounted to minimize friction and drag. Standard wire rollers are very good dancer rollers for these type systems. These rollers usually contain excellent integral bearings.

Dancer Systems

Dancer Design and Considerations

Warner Electric dancer control systems are designed to control tension in unwind, intermediate, or rewind applications for materials such as paper, foil, films, cloth, metals or wire. The system consists of four parts:

1. The controlling device, i.e. brake, clutch, or drive motor, AC or DC
2. The controller
3. A pivot point sensor which determines the position of the dancer roll
4. The dancer arm and roll assembly (customer supplied)

Dancer Arm Design

Various configurations of dancer arms exist, but their purpose is the same. The dancer provides a means of creating tension on the web by providing a force opposite to the direction the web is pulled.
The effective force applied to the arm to create the desired tension is a function of the number of dancer rollers on the dancer arm.

Single Roll Dancer

$F=2 \times N \times T$

Where:
F = Effective loading force against the web
$\mathrm{T}=$ Tension desired in the web
$\mathrm{N}=$ Number of dancer rollers

Multiple Roll Dancers

$F=2 \times N \times T$
Where:
F = Effective loading force against the web
$\mathrm{T}=$ Tension desired in the web
$\mathrm{N}=$ Number of dancer rollers

The more dancer rollers on the dancer arm, the higher the effective force must be to provide the same tension.
Dancer arms should be made of lightweight material to minimize the added effect of weight to the system as well as to keep the inertia as low as possible. Depending on the application and the amount of room available, this will dictate the type of design used and physical size.
The following figures depicting basic dancer designs are intended for guideline only. These are not the only configurations that can be used. Variations on these designs or other designs are acceptable as long as loading and storage requirements can be met.

Figure 1 - Horizontal Dancer with Vertical Movement

Figure 2 - Multiple Roll Dancer with Vertical Movement

Figure 3 - Vertical Dancer with Horizontal Movement

Figure 4 - S-Wrap Dancer with Vertical Movement

Tension Control Systems

Design Considerations and Selection

Dancer Systems

The following calculations offer a guide for designing a dancer arm．These will provide for an optimum system and for proper loading and storage with the system．

1．Determine Dancer Arm Length，L

This can be done by calculating the length based on the maximum operating linear speed of the system or from the chart below．

a．Calculating Length

$$
L=12+\frac{\text { Max Web Speed (FPM) -200 }}{100}
$$

Minimum L to maximum L should normally be 12 ＂to 40 ＂．
b．Chart Determination

Chart 1 －Dancer Arm Length vs．Web Speed
2．Determine Swing Height of Dancer Arm，S
$S=1.04 \times L+D_{R}$
Where：
$\mathrm{L}=$ Length of arm calculated or chosen in Step 1.
$D_{R}=$ Diameter of dancer roller
3．Determine Height from edge of web to centerline of Dancer Pivot Point，H
$H=\frac{S}{2}+D_{R}$
Where：
S＝Swing height calculated from Step 2.
$D_{R}=$ Diameter of dancer roller

Because wide ranges of tensions are required from most systems，some type of loading is usually used to make setting the tension easier．The preferred method is to use a pneumatic cylinder［normally a low inertia，friction less type（Bello－fram）cylinder］．Weights or springs can be used，but these add weight and inertia to the system and are sometimes very difficult to stabilize．

4．Selecting the Loading Point，X
$X_{\text {MIN }}=0.25 \times L$
$X_{\text {MAX }}=0.33 \times L$
Where ：
$\mathrm{L}=$ Length of the dancer arm
5．＊Calculating Cylinder Force Required， F_{c}
$F_{C}=\frac{F \times L}{X}$
Where：
F＝Effective force of the dancer
$\mathrm{L}=$ Length of the dancer calculated in Step 1
$X=$ Loading point calculated in Step 4
6．Calculating Cylinder Stroke required
Stroke $=2 \times \mathrm{X}$ Tan30 or $1.155 \times \mathrm{X}$
Where：
X＝Loading point from Step 4
By following these guidelines，a dancer design with the ＋／－ 30 degree swing will be achieved．This is the range the Warner Electric pivot point sensors require for opti－ mum control performance．

The following chart depicts the percentage of tension variations based on the dancer position in a properly designed dancer．

Chart 2 －Tension variation vs．dancer arm angle
＊See page 157 for effective cylinder force at a given air pressure．

Tension Control Systems

Design Considerations and Selection

The following notes are provided for information purposes and should be considered in the design of a dancer arm. Following these guidelines will result in a more optimized system.
I. Horizontal Dancer with Vertical Movement
A. Downward Loaded Dancer

Tension $=\frac{\text { Downward Loading Force }}{2 \times \text { Nuber }}$
$2 \times$ Number of Dancer Rolls
Total Downward loading force at dancer roll =
Downward force created by loading + weight of dancer arm

In this case, the pressure required will be less because the dancer weight adds to the total loading force.
B. Upward Loaded Dancer Arm

Tension $=\frac{\text { Upward Loading Force }}{2 \times \text { Number of Dancer Rollers }}$
Total Upward loading force at dancer roll =
Upward force created by loading weight of dancer arm
In this case, the pressure required will be greater because the dancer weight subtracts from the total loading force.
II. Vertical Dancer with Horizontal Movement

Dancer weight in this case is no longer a factor on the loading force on the dancer.

$$
\text { Tension }=\frac{\text { Loading Force }}{2 \times \text { Number of Dancer Rollers }}
$$

Caution must be used when this type dancer and diaphragm type cylinders as the rod assembly is supported by the cylinder bushing only. Secondary support is necessary to keep the cylinder shaft from binding.

TCS-605-1 TCS-605-2 TCS-605-5

Warner Electric pivot point sensor is a precision electronic positioning device which is used with the MCS-203, MCS-207, TCS-210 or TCS-310 dancer
 control system to provide smooth control of unwind stands operating at any speed. The sensor is mounted at one end of the dancer roll pivot shaft where it monitors the angular position, direction of travel and relative speed of dancer arm movement. TCS-605-2 used with drive systems.

Intermittent Motion Sensor Coupling

The Intermittent Motion Sensor Coupling is a two part coupling designed for applications where the web is started and stopped by intermittent motion. The design allows for an adjustable deadband so that the dancer arm can move before motion is translated to the pivot point sensor. This allows for smoother control of the tensioning device and prevents unwanted hunting and instability in the system. If your application requires this type of coupling, contact your Warner Electric tension specialist to determine if it is right for you.

Figure 1

Specifications

Model No.	Part No.	Description
TCS-605-1	$7330-448-002$	Single turn potentiometer for dancer arm systems where the range of rotary motion from full-up to full-down dancer position is normally maintained within $60^{\circ}(1 \mathrm{~K} \Omega)$
TCS-605-2	$7330-448-004$	Single turn potentiometer for drive systems $(5 \mathrm{~K} \Omega)$
TCS-605-5	$7330-448-003$	Five turn potentiometer for festooned dancer systems (1K $\Omega)$
Accessories		
	$6910-101-001$	Intermittent motion sensor coupling
	$284-8000-003$	Coupling for Pivot Point Sensors
	$7330-101-001$	TCS-605 Cable Assembly Only
	$7330-101-002$	TCS-605-1 Sensor Assembly Only

TMacta
 DIST. AUTORIZADO

 Tension Control Systems

 Tension Control Systems}

Load Cell Sensors

Foot Mounted and End Shaft Mounted Series

FM Series Sensors

The foot mounted style load cells (used with pillow blocks) provide easy and convenient mounting to the roll that is being measured. It is a strain gauge style unit that is ideal for heavy tension applications.

ES Series Sensors

The end shaft style load cells mount to the end of the roll that is being measured. It is a LVDT (Linear Variable Differential Transformer) style that can withstand overloads up to 10 times its rated load capacity. Several models are offered: dead shaft (no bearing), live shaft and cantilever where a single load cell can be used to measure the tension on the roll. Some units are powered with DC voltage and others are powered with AC. The AC units offer a price advantage over the DC.

Typical System Configuration Examples

FM Load Cell with an Electric Brake

This is a single load cell unwind application example. The electric brake varies the tension on the web depending on the feedback from the load cell. The load cell signal is amplified and interpreted in the controller (MCS2000-CTLC). The controller then puts out a corresponding 0-10 VDC signal to the power supply and drive (MCS2000-PSDRV). The PSDRV then amplifies and interprets the signal from the controller and puts out a corresponding 0-24 VDC signal to the brake to apply either more or less braking.

> Magnetic Particle Brake

ES Load Cell with a Pneumatically Operated Brake

This is a dual load cell unwind application example. In this application, the air brake is used to vary the tension on the web based on the feedback from the load cell. The two load cell signals are summed and amplified in the controller (MCS2000-CTLC). The controller then puts out a corresponding 0-20 mA signal to the transducer, which converts this signal from current to pressure to command the brake to apply either more or less braking.

FM Series Foot Mounted Load Cells									
Load Ratings	$\begin{gathered} \mathrm{N} \\ \text { (lbs.) } \end{gathered}$	$\begin{aligned} & 100 \\ & (22) \end{aligned}$	$\begin{aligned} & 250 \\ & \text { (56) } \end{aligned}$	$\begin{gathered} 500 \\ (112) \end{gathered}$	$\begin{aligned} & 1,000 \\ & (225) \end{aligned}$	$\begin{aligned} & 2,500 \\ & (562) \end{aligned}$	$\begin{gathered} 5,000 \\ (1,124) \end{gathered}$	$\begin{gathered} 10 \mathrm{~K} \\ (2,248 \end{gathered}$	
Size		01	01	01	01	01	01	02	
Input Power	± 12 to $\pm 15 \mathrm{VDC}, \pm 5 \%$						Deflection:		
Output Signal	5 VDC factory setting at nominal load(can be rescaled for 25% load at +10 VDC output)								
Ambient Temperature	$0-70^{\circ} \mathrm{C}(\mathrm{F}) \quad$ FM Series								
Temperature Drift	0.1% of rating per ${ }^{\circ} \mathrm{C}$				FM SeriesModel Numbers		$\overline{\mathrm{FM}} \underline{0} \underline{1}-1 \underline{0} \underline{0} \underline{0}-\underline{A C}$		
Non-Linearity \& Repea	tability	<0.5\%							
Power Consumption	1 watt						Model Size	$\begin{aligned} & \text { Load } \\ & \text { in } N \end{aligned}$	Amplifier built in
	16 ft . provided with load cell.								
ES Series End Shaft Mounted Load Cells									
AC10 requires a power supply/amplifier									
Load Ratings	$60 \mathrm{lbs} ., 170 \mathrm{lbs} ., 500 \mathrm{lbs}$.						Deflection:		
Input Power	15 Vrms @ 5 KHz						6 mm at full load rating		
Output Signal	3.2 volts AC/inch displacement/volt excitation								
Output Impedance	780 ohms $\pm 30 \%$								
Ambient Temperature	-60° to $+250^{\circ} \mathrm{F}\left(-50^{\circ}\right.$ to $\left.+620^{\circ} \mathrm{C}\right)$								
Temperature Drift	0.02\%					ES AC10 Series Load Ratings			
Linearity \& Repeatability	0.1\% of full scal						$\begin{aligned} & 60 \mathrm{lbs} . \\ & 170 \mathrm{lbs} . \\ & 500 \mathrm{lbs} . \end{aligned}$		
Overload Protection	10 times maximum rated load of unit								
Cable	Two 30 ft . cables provided with load cells.								

| ES AC10 Series | A C 10 |
| :--- | :--- | :--- |

Model Numbers
*See below for shaft diameters

Ambient Temperature $32^{\circ} \mathrm{F}$ to $+160^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Maximum cable distance between load cell and power supply board 100 feet
Part Number PSAC10 (For a $10 \times 8 \times 4$ Housing add -H)
*ES, A30, B30 \& C30 Series
Load Ratings A30 $8 \mathrm{lbs} ., 20 \mathrm{lbs} ., 50 \mathrm{lbs} ., 90 \mathrm{lbs}$.
B30 8 lbs., $20 \mathrm{lbs} ., 50 \mathrm{lbs} ., 90 \mathrm{lbs} ., 140 \mathrm{lbs} ., 200 \mathrm{lbs} ., 300 \mathrm{lbs} ., 500 \mathrm{lbs}$.
C30 8 lbs., 20 lbs., 50 lbs., 90 lbs., 140 lbs., 200 lbs., 300 lbs., 500 lbs.
Input Power
24 VDC at . 040 amps
(12 to 30 VDC acceptable, with LVDT output proportional)
Output Signal
3 VDC/unit
Ambient Temperature -60° to $+250^{\circ} \mathrm{F}\left(-50^{\circ}\right.$ to $\left.+120^{\circ} \mathrm{C}\right)$
Overload Protection 10 times rated load range
Deflection:
6 mm at full load rating
Note: Tension cells are factory adjusted to provide an offset voltage with no load applied (no deflection). Using an input of 24 volts DC, the LVDT is set to provide an output of 3.5 volts into a resistive load of not less than 100,000 ohms. The voltage resulting from the maximum rated load then adds to or subtracts from the 3.5 volt offset. This results in an output of 6.5 volts in Compression.

Load Cell Selection

The following steps should be followed to determine the proper load cell size and style for your application.

1. Determine whether you will

 be using one or two load cells.It is best for two sensing heads to be used, one at each end of the sensing roll. The two individual web tension inputs are averaged in the controller, which takes care of non-central alignment of the web over the sensing roll and slack edges from a non-uniform reel. The AC10 and C30 can only be used in dual load cell applications. The FM Series and A30 can be used in single load cell applications. The A30 is designed to be used with a single pulley or sheave mounting with a projection of 1 or 2 inches. An ES style cantilever unit is also available in lengths to 18 ". Consult the factory for more information.

2. Choose the load cell model

 that fits dimensionally.The FM style is a foot mounted load cell (used with pillow blocks) that mounts perpendicular to the roll being measured. The ES style is an end shaft model where the mounting bolt centerline is on the axis of the measuring roll. There are two shaft mounting configurations with the ES style load cells. The "W1" cell clamps to the shaft while the "W2" cell allows for thermal expansion of the shaft. Both units have self aligning features. When using the dual load cell units (B30, C30 or AC10 series) one of each shaft mounting configuration must be used. It is recommended that a system be ordered in the AC10, B30 or C30 series (ex. AC10A12S) which will insure one "W1" load cell and one "W2" load cell is supplied as a matched pair.
The AC10 is an AC version load cell that is economically priced when compared with the other ES models, even with the added power supply board that is required to power it.
Available sizes and dimensions are listed on pages 42 \& 43 for the ES or FM style units. Choose the unit(s) that will best fit the machine construction.

Macza
 DIST. AUTORIZADO
 Tension Control Systems

MEX (55) 53632331 MTY (81) 83541018
QRO (442) 1957260 ventas@industrialmagza.com

Load Cell Sensors

3. Load Cell Force Calculations

The FM style load cell can be mounted regardless of orientation, but has to work in compression. Only the perpendicular force (resultant) is measured by the load cell. The perpendicular force can be at a maximum permitted angle of $\pm 30^{\circ}$. The FM style is a strain gauge load cell and the maximum tension in the web used (T) should be the potential overload force

The ES style load cells can be mounted at any angle around the axis of the measuring roll with any wrap angle. They work equally well in either tension or compression making it easy to adapt them to any new, retrofit, or replacement application. The mechanical structure and primary conversion element is designed to handle overloads at ten times the rated load range. Therefore, these units don't need to be oversized to provide adequate overload protection.
The following selection information is required to select a load cell:
$\mathrm{T}=$ maximum tension in the web (Ibs.)
W = weight of the sensing roll (lbs.) acts vertically
$X=$ wrap angle (degrees), 180° max.
$\mathrm{Y}=$ angle between resultant force of tension and vertical (degrees)
SF= Safety factor. Use 1 for ES style load cells and 2 for FM style load cells.
RF = Resulting force (lbs.)
4. Choose the load cell rating that is equal to or greater than the force calculation.

- Minimum rating of each cell should exceed 7% of maximum rating.

5. Choose accessories
a. For ES style load cells choose shaft diameter. Chart is on page 43.
b. For the A30, B30 or C30 models choose cables L1A25 or L1A99 which are 25 or 99 ft . cables. Other lengths are available. A cable is needed for each load cell ordered.
c. For the AC10 model the PSAC10 (power supply amplifier) is needed. Specify without or PSAC10-H with housing.

Sin/Cos Table

Degrees	Sin	Cos
0°	.0000	1.000
5°	.0872	.9962
10°	.1736	.9848
15°	.2588	.9659
20°	.3420	.9397
25°	.4226	.9063
30°	.5000	.8660

Case 1: Resultant force points horizontal
Load $=\mathrm{SF} \times \mathrm{T}(\mathrm{lbs}.) \times \sin (\mathrm{X} / 2)$

Case 2: Resultant force points down

Case 3: Resultant force points upward
Load $=[$ SF $\times \mathrm{T}(\mathrm{lbs}.) \times \sin (\mathrm{X} / 2)]-\frac{[\mathrm{W}(\mathrm{lbs} .) \times \cos \mathrm{Y}]}{2}$

Degrees	Sin	Cos
35°	.5736	.8192
40°	.6428	.7660
45°	.7071	.7071
50°	.7660	.6428
55°	.8192	.5736
60°	.8660	.5000
65°	.9063	.4226

Degrees	Sin	Cos
70°	.9397	.3420
75°	.9659	.2588
80°	.9848	.1736
85°	.9962	.0872
90°	1.000	.0000

Macaza
 DIST. AUTORIZADO
 MEX (55) 53632331 MTY (81) 83541018 QRO (442) 1957260 ventas@industrialmagza.com
 Tension Control Systems

Load Cell Sensors

ES Series

End Shaft Mounted Load Cells

AC10
Dual Load Cell, Non-Rotating Shaft Load ratings 60 lbs., 170 lbs., 500 lbs.

PSAC10-H

AC10 Power Supply/Amplifier Housing

Cable Assembly
L1A30 30 ft . Cables

Note:

Stainless steel self-aligning bushing provided for shaft sizes $3 / 4^{\prime \prime}, 1^{\prime \prime}, 1-1 / 4^{\prime \prime}$ and 1-7/16" diameters. Other shaft diameters available on special order.

PSAC10
AC10 Power Supply/Amplifier

A30

Single Load Cell, Non-Rotating Shaft

Sheave or pulley mounting with projection of 1 or 2 inches.

Load Ratings: 20 lbs ., 50 lbs ., 90 lbs.
Note: Other load ratings available - consult factory.
B30

Load Ratings: 20 lbs ., 50 lbs ., 90 lbs ., 200 lbs ., 500 lbs.
Note: Other load ratings available - consult factory.
C30
Dual Load Cell, Rotating Shaft

Load Ratings: 20 lbs., 50 lbs., 90 lbs., 200 lbs., 500 lbs.
Note: Other load ratings available - consult factory.

Cable Assemblies- For All 30 Series
L1A25 25 ft . with Connector
L1A99 99 ft . with Connector

RH and RT dimensions based on shaft diameter

Inches	$3 / 4$	1.0	$1-1 / 4$	$1-7 / 16$
Code	12	16	20	23
RH	1.31	1.38	1.69	
RT	3.88		4.13	

Standard Shaft Diameters	
Shaft Diameter	Standard
$0.75^{\prime \prime}$	$3 / 4^{\prime \prime}$
$1.00^{\prime \prime}$	$1 "$
$1.25^{\prime \prime}$	$1-1 / 4^{\prime \prime}$
$1.4375^{\prime \prime}$	$1-7 / 16^{\prime \prime}$
Other shaft sizes available on special order -	
consult factory	

Selection Guide

Selecting the Correct Tension Control

Selecting the correct tension control is as important as selecting the proper tension clutch or brake. As the control is the heart of the system which provides the necessary controlling function in the application, selecting the wrong control or inadequate control can be as bad as incorrectly sizing the mechanical portion of the system.

Normally control selection can be very simple if a few simple questions can be answered regarding the application. By doing so, selection can be very easy and painless.

Selection Steps

The following steps outline a simple way of selecting the proper control system for the application.

1. Determine the type of system that is to be used. Will the system be load cell, dancer, or open loop analog control?
2. Next, determine the type of brake or clutch system that the control will be used with. Will this be an electric or pneumatic system?
3. Using the Quick Selection Chart, determine which models may be suitable for the application.
Once the determination of the control/controls has been made for the application, review the specifications for the various controls to determine the characteristics and features that best suit the application and your requirements.

Mechanical Elements

Once the control has been selected, be sure to check that it will work with the brake or clutch previously selected. This can be determined from the specific technical specification for the control selected. Remember, not all controls will work with all clutches and brakes.

If the control selected will not operate the controlling device selected, i.e., clutch or brake, then a different control must be selected.

Control - Quick Selection Guide

Model Number	Output Voltage	System Type				Air or Electric	Page
		Open Loop		Closed Loop			
		Manual Adjust	Analog Input Adjust	Dancer	Load Cell		
MCS2000	$\begin{gathered} 0 \pm 10(2 \text { channel }) \\ (0-20 \mathrm{~mA}) \end{gathered}$	\bullet	\bullet	\bullet	\bullet	Air/Electric	46
*TCS-200	0-24	\bullet	\bullet			Electric	56
TCS-200-1	0-24	\bullet	\bullet			Electric	56
TCS-200-1H	0-24	\bullet	\bullet			Electric	56
MCS-203	0-24			-		Electric	61
MCS-204	0-24	\bullet	\bullet			Electric	57
MCS-207	0-10 (1-50mA)			-		Air	63
MCS-208	0-10 (1-50mA)	\bullet	\bullet			Air	59
TCS-210	0-24 (48)			-		Electric	62
TCS-220	0-24 (48)	\bullet	\bullet			Electric	58
TCS-310	0-24 (48) (2 channel)			-		Electric	64
TCS-320	0-24 (48) (2 channel)	\bullet	\bullet			Electric	60

[^1]
Tension Controls

Selection Guide

| Coscription | Pally digital control, PLC compatible, which can operate in both open |
| :--- | :--- | :--- |
| (analog input follower) or closed (dancer or load cell) mode. Directly | |
| controls electric clutches and brakes, and air brakes via an | |
| electric/pneumatic transducer. Control has two output channels with | |
| fully programmable splice logic. Can also be used as a digital front | |
| end to an analog drive. | |

Tension Controls

MCS2000 - Modular Control Components
Flexible modular design is the key to

The MCS2000 Digital Web Tension Controller handles all winding and unwinding applications, either brake or motor operated.

Difficult setups with potentiometer adjustments are no longer a problem. The MCS2000 Web Tension Controller is easily programmed with only four push buttons on a panel-mounted programmer; a handheld programmer; or a Windows driven software package. All programmers employ a simple menu driven format. The unit can also "talk" to a PLC via the RS232 cable.

The power supply AC input autoranges from 95 to 264 VAC to avoid any match-up problems. The unit can be used in both open-loop and closedloop systems. It can also be configured in an "open plus super-imposed/ closed-loop design for very precise tension control applications.

Two types of amplifiers are available for powering electro-magnetic
brakes. The amplifiers have outputs for controlling two high-power brakes at 1.4 or 3 Amps per channel, continuous for each brake.

The MCS2000 modules are housed in metal enclosures designed for snapfit assembly, eliminating screw attachment (patent applied for). All components are on printed circuit boards. Wiring connections are made with quick-disconnect screw terminals.

Features

- Modular system
- Easy to program
- Plug-in memory card for saving parameters
- Programmable in English or French
- PLC compatible
- Optically isolated inputs and outputs
- Dual output in either current or voltage operation mode
- Auto scaling of sensors
- Capable of open-loop operation with an ultrasonic sensor
- Splicing capability
- Windows programming software
- Automatic voltage range of AC input (95-264 VAC)
- Short-circuit protection
- Quick-disconnect wiring terminals
- Capable of controlling dual channel rewind or unwind
- Automatic PID correction - from analog inputs
- 2×16 backlit LCD display for programming and parameter readout

Modular Configurations

Ordering Information

Model	Feature	Part Number
MCS2000-CTDA	Closed loop dancer arm controller	$6910-448-120$
MCS2000-CTLC	Closed loop load cell controller	$6910-448-121$
MCS2000-ECA	Digital programmable controller	$6910-448-096$
MCS2000-WIN	Windows software	$6910-101-096$
MCS2000-PS	24 VDC power supply	$6910-448-091$
MCS2000-DRV	Dual channel 24 VDC driver	$6910-448-092$
MCS2000-DRVH	Dual channel 48 VDC driver	$6910-448-095$
MCS2000-PSDRV	24 VDC Power supply \& 24 VDC driver	$6910-448-093$
MCS2000-PSDRVH	24 VDC Power supply \& 48 VDC driver	$6910-448-094$
MCS2000-PSH	48 VDC Power supply, 6 AMP	$6910-448-098$
MCS2000-PSHA	48 VDC Power supply, 12 AMP	$6910-448-088$
MCS2000-IS	Dual load cell amplifier	$6910-101-092$

Model	Feature	Part Number
MCS2000-PRG	Handheld programmer	$6910-101-090$
MCS2000-CRD	Memory card	$6910-101-091$
MCS2000-DP	Panel mount programmer	$6910-101-093$
MCS2000-CBL	RS232 cable	$6910-101-095$
I/P Transducer	0-120 PSI	$6910-101-066$
Static Switch	Solid state switch	$6910-101-007$
TCS-605-1	1 turn pivot point sensor (1K)	$7330-448-002$
TCS-605-5	5 turn pivot point sensor (1K)	$7330-448-003$
Coupling	Intermittent motion sensor coupling	$6910-101-001$
Ultrasonic Sensor	$4-40 "$ sensing distance	$7600-448-001$
Ultrasonic Sensor	$8-80 "$ sensing distance	$7600-448-002$

Tension Controls
MCS2000 - Modular Control Components

Application Examples

PSDRV Power Supply and Drive

Closed Loop (Dancer Arm) Dual Unwind

Closed Loop (Load Cell) Unwind

Open Loop (Ultrasonic Sensor) Unwind

Tension Controls

MCS2000 - Modular Control Components

Closed Loop Control
MCS2000-CTDA
Dancer arm feedback
(P/N 6910-448-120)

Both units have especially been designed for user applications. They include all functions for web tension control. The units are equipped with standard power supply, controller front face keyboard and display. The CTLC unit is provided with 2 load cell inputs with selectable sensitivity from 10 mV to 10 V , compatible with most sensors on the market.

Applications

For every web or wire tension control application. Applicable regardless of controlling device (air brake, electric brake or motor).

Common Features

- Scaleable tension readout
- Password protected
- 8 different output options
- Fully digital
- Multi-purpose
- RS232 communications
- Memory card for storing up to 2 full programs
- Windows programming software
- Integral terminal reset
- 2 output channels
- Automatic sensor scaling
- External set point change
- Programmable output configuration
- Output sensor information
- Automatic or imposed PID correction
- Taper Tension Available on other models
- Manual/Auto Operation per front panel pushbutton

MCS2000-WINDOWS

(P/N 6910-101-096)
The Windows programming software package is an icon driven interface for easy setup and parameter changes to the control.
 It is compatible with any PC running under Windows 3.1 or above. The software can be run under two different modes: demo or connected. The demo mode allows software use without being connected to the control. In the connected mode, the PC and the MCS2000 control must be connected through the RS232 cable.

Specifications

Input Power/Output Power

Input supply
Ref. Output Sensor Output

Performance
Analog
input/output resolution
Analog Inputs
2 analog inputs
Sensor input
Analog Outputs
2 output channels
Brake Power Supply

Open loop signal output
Digital Inputs

Digital Outputs
Programming Options

Display Options

Indicator

Adjustments

Saving Options

Controller stores one full program. Memory card stores two full programs.

110-240 VAC, switch selectable 10 VDC, 10 mA max. $\pm 15 \mathrm{VDC}, 100 \mathrm{~mA}$ max.

12-bit ADC/DAC, 4096 steps
$0-10$ VDC, can be increased upon request (consult factory)
Range: ± 10 VDC, delta min. of 4 VDC
$0- \pm 10$ VDC or $0-20 \mathrm{~mA}$ software adjustable
For use with brake systems, requires power supply/driver module.
(See page 51)
$0-10 \mathrm{VDC}, 10 \mathrm{~mA}$ max.
(Activated by connecting the input to ground. Inputs are optically isolated if a separate external 24 VDC supply is used.)
Set point adjustment
Signal multiplier
Open \& closed-loop
Limit output
Integral reset
Synchronize ABC input change
ABC binary inputs
2 binary outputs for sensor error indication
Personal computer or PLC through RS232 cable
(Can display 2 parameters on any of the programming options listed.)
Set point Output 1
Sensor value Output 2
Analog 1 input Error sensor 1
Analog 2 input Error sensor 2
PID adaptation
IN\# for state of digital inputs
Green power LED indicator on switch
Output 1, 2:
Green: 0 + 10 DC
Red: 0-10 DC
Out Window Indication
Green: out of limits
Setpoint +
Setpoint -
Auto/Manual

Switching Inputs

Electro-mechanical, rated 24 VDC
Solid state, rated 40 VDC, minimum

Tension Controls

MCS2000 - Modular Control Components

Digital Controller

The MCS2000-ECA is a digital tension controller that can be used in both open-loop and closed-loop systems. It can also be configured as an "open plus superimposed closed-loop" for very precise tension control.

Features

- Programmable output options
- Fully digital
- RS232 communications
- Memory card for storing up to 2 full programs
- Windows programming software
- Integral terminal reset
- 2 output channels
- Automatic sensor scaling
- External set point change
- Digital outputs from sensor input value

Input Power/Output Power	
Input Supply	24 VDC
Ref. Output	10 VDC, 10 mA max.
Sensor Output	$\pm 15 \mathrm{VDC}, 100 \mathrm{~mA}$ max.
Performance Analog input/output resolution	12-bit ADC/DAC, 4096 st
Analog Inputs	
2 analog inputs	$0-10$ VDC, can be increased upon request (consult factory)
Sensor input	Range: $\pm 10 \mathrm{VDC}$, delta min. of 4 VDC
Analog Outputs	
2 output channels	$0- \pm 10 \mathrm{VDC}$ or $0-20 \mathrm{~mA}$ software adjustable
Open loop signal output	0-10 VDC, 10mA max.
Digital Inputs	(Activated by connecting the input to ground. Inputs are optically isolated if a separate external 24 VDC supply is used.)
	Set point adjustment Signal multiplier Open \& closed-loop Limit output Integral reset Synchronize ABC input change ABC binary inputs Inverse sensor polarity
Digital Outputs	2 binary outputs for sensor error indication
Programming Options	Personal computer or PLC through RS232 cable
Display Options	(Can display 2 parameters on any of the programming options listed.) VIA MCS2000-DP or MCS2000-PRG Set point Sensor value Analog 1 input Analog 2 input Output 1 Output 2 IN\# for state of digital inputs Error sensor 1 Error sensor 2 PID adaptation
Indicator	Green power LED indicator
Saving Options	Switching Inputs
Controller stores one full program.	Electro-mechanical, rated 24 VDC
Memory card stores two full programs.	Solid state, rated 40 VDC, minimum

Tension Controls

MCS2000 - Modular Control Components

MCS2000-PS
(P/N 6910-448-091)

Power Supply

The MCS2000-PS Power Supply is designed to provide +24 VDC to the MCS2000-ECA Programmable Controller and/or the MCS2000-DRV module. If your system requires a 24 VDC power supply and an electromagnetic brake driver, these components are available as a single package (MCS2000-PSDRV).
The packaged unit has the same features and specifications as the MCS2000-PS and MCS2000-DRV units alone.

Features

- Auto-ranging AC input
- Short circuit and overload protection
- Quick-disconnect terminals

Specifications

Input Power/Output Power

Input supply	$110-230 \mathrm{VAC}, \pm 15 \%$,
	$50 / 60 \mathrm{~Hz}$
Output supply	$+24 \mathrm{VDC}, 3.1 \mathrm{~A}$

MCS2000-PSH
Input supply $95-264 \mathrm{VAC}, \pm 10 \%$,
Output supply 48 VDC @ 6 Amps,
6910-448-098

MCS2000-PSHH

Input supply	$95-264$ VAC, $\pm 10 \%$,
Output supply	48 VDC @ 12 Amps,
	$6910-448-088$

MCS2000-DRV, -DRVH, -PSDRV
(P/N 6910-448-092, 6910-448-095, 6910-448-093)

MCS2000-PSDRVH
(P/N 6910-448-094)

MCS2000-DRV

This module serves as a dualchannel 24 VDC driver for two electromagnetic brakes at 1.4 amps per channel. This module requires a separate 24 VDC power source for operation.

MCS2000-DRVH

This module serves as a high voltage dual channel 48 VDC driver for two electro-magnetic brakes at 3.0 amps per channel steady state, 6 amps peak for overcurrent. This module requires a separate 48 VDC power source for operation.

Power Supply/Drivers MCS2000-PSDRV

Single package module with both power supply and dual channel driver in a single enclosure. This module can be used to power the MCS2000-ECA and operate two electro-mechanical brakes up to $1.4 \mathrm{amps} / c h a n n e l ~ f o r ~$ closed-loop operation. For open-loop operation the module can be operated as a stand alone power supply driver.

MCS2000-PSDRVH

Single package module consisting of a 24VDC power supply and dual channel 48VDC driver. This module can be used to power the MCS2000ECA and requires a separate 48VDC power supply to operate two electromechanical brakes up to 3.0 amps/channel for closed-loop operation. For open-loop operation the module can be operated as a stand alone power supply/driver with a separate 48VDC power supply.

Specifications

Input Power/Output Power
Input supply

DRV
DRVH

Ref. output
Analog Inputs DRV, DRVH

DRVH

Analog Outputs

DRV

DRVH

Indicators

Adjustments

Common
Features
$+24 \mathrm{VDC}, \pm 10 \%$, 1.4 Amps per channel
$+48 \mathrm{VDC}, \pm 10 \%, 3 \mathrm{Amps}$ per channel
10 VDC, 10 mA max.

Two 0-10 VDC inputs Two scalable inputs Additional two 0-20mA inputs

Two 0-24 VDC 1.4A cont. 3A peak/ channel
Two 0-48 VDC, 3 A cont., 6A peak/channel w/o scaled outputs, 0-10DC, 10mA max.
Two LED output indicators for channels A and B.

Anti-residual adjustment for each channel
Offset adjustment for scalable input for each channel Gain adjustment for scalable input

Short circuit and overload protection
Quick disconnect terminals

Tension Controls

MCS2000 Series Web Tension Control Systems

Panel Mounted Programmer

A panel-mounted programming unit for the MCS2000-ECA Programmable Controller. A 6-foot shielded cable (provided with the unit) plugs into the 9-pin connector on top of the MCS2000-ECA.

Features

- 2×16 character backlit LCD display
- Powered by MCS2000-ECA Programmable Controller
- Easy-to-use menu-driven programming
- Requires only four push buttons for operation
- Can be used to display two different operating parameters while the system is running.

MCS2000-PRG
(P/N 6910-101-090)

Handheld Programmer

A handheld programming unit for use with the MCS2000-ECA Programmable Controller. A quick-disconnect cable (provided with the unit) plugs into a 4position jack on the ECA.

Features

- 2×16 character backlit display
- Powered by MCS2000-ECA Programmable Controller
- Easy-to-use menu-driven programming
- Requires only four push buttons for operation
- Can be used to display two different operating parameters while the system is running.

Memory Card

$19 / 16^{\prime \prime} \times 9 / 16^{\prime \prime}$ memory card for storing up to two full programs (port A or port B). Plugs into a slot in the MCS2000-ECA Programmable Controller.

Features

- Program memory (port A) can be downloaded off the card simply by cycling power to the MCS2000-ECA Programmable Controller.
- Card memory is protected against inadvertent erasures by a stray magnetic field.

Tension Controls

MCS2000-IS
(P/N 6910-101-092)

Load Cell Interface

The interface sensor will sum and amplify the input signals from two load cells, and can be used with a number of different load cells. The interface should be positioned close to the load cells to ensure that no noise is injected into the low voltage signal before it is amplified.

Specifications

Input Power/Output Power	
Input supply	+24 VDC, $\pm 10 \%, 300 \mathrm{~mA}$
Load cell supply	$\pm 15 \mathrm{VDC}$ or $\pm 5 \mathrm{VDC}, 100 \mathrm{~mA}$ max.
Analog Inputs	
2 load cell inputs	Range: Any voltage between 20 mV and $10 \mathrm{VDC}, 5 \mathrm{~K} \Omega$ input impedance
Ultrasonic input	Range: 0-10 VDC, delta min. of 1 V , $10 \mathrm{~K} \Omega$ input impedance, Maximum gain: 1000
3 inputs for line speed	Range: 0-10 VDC, $10 \mathrm{~K} \Omega$ impedance

Analog Outputs (Short circuit protected)

Calibrated load cell/
ultrasonic-sensor output 0-10 VDC, 10mA max.
Power for ultrasonic sensor +24 VDC
Voltage reference $\quad 10 \mathrm{VDC}, 10 \mathrm{~mA}$
Adjustments

Indicators
Select polarity of ultrasonic sensor output, SW1
Select polarity of voltage reference, SW2
Setup min. \& max. values for the load cell or ultrasonic input, SW3
Adjust gain of load cell inputs (p1, p2), 450 min., 1000 max.
Adjust load cell offset (p3, p4), $\pm 5 \mathrm{~V}$
Adjust gain of summed load cell (p5), 1 min., 2 max.
Adjust gain on line speed (p6), 0-10 V
Adjust offset for ultrasonic input (p7), 2.5 V max.

Adjust gain for ultrasonic input (p8), 1 min., 5 max.
Adjust gain for selected output (p9), 0.2 min., 1.1 max.

Green power indicator Red 10-digit display indicates W3 setting

Electro-Pneumatic Transducer

 (P/N 6910-101-066)

Used for interfacing with pneumatic brakes. Warner Electric offers a convenient package that consists of an air filter with automatic moisture drain, together with one I/P (current-pressure) transducer.

Specifications

Input signal	4-20mA
Output range	0-120 Psig.
Supply pressure	20-150 Psig. Note: Supply pressure to the transducer must always be at least 5 Psig. above the maximum output pressure required for the brake.
Temperature range	$-20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$
Minimum air consumption	6.0 (SCFH) at 15 Psig.
Supply pressure effect	1.5 Psig. for 25 Psig. supply change
Pipe size	1/4" NPT (transducer and filter)

Tension Controls

MCS2000 Series Web Tension Control Systems

Dimensions

Closed Loop Controls

DIN rail
mounting

Mounting

Load Cell Interface

-IS

TCS-200-1
(P/N 6910-448-086)
TCS-200
(P/N 6910-448-055)
TCS-200-1H
(P/N 6910-448-087)

Analog/Manual Control

The Analog/Manual Control is a basic, low cost, open loop control for manual type operation of Electro Disc tension brakes. A remote torque control function is available that enables the operator to control the desired tension from any convenient location. A roll follower feature provides automatic adjustment of brake torque proportional to roll diameter change. For the TCS-200-1 and TCS-200-1H analog inputs can be followed.

Typical System Configuration

The complete system consists of:

1. Tension brake
2. Analog tension control
3. Control power supply
4. Optional sensor inputs (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Specifications

Input

TCS-200 24-30 VAC, $\pm 10 \%, 56 / 60 \mathrm{~Hz}$, single phase
TCS-200-1, TCS-200-1H $\quad 115 / 230$ VAC, $\pm 10 \%, 50 / 60 \mathrm{~Hz}$, single phase

Output
TCS-200 PWM full wave rectified, 0-3.24 amps
TCS-200-1
TCS-200-1H
current controlled
Adjustable 0-24 VDC, 4.25 amps
maximum continuous
Adjustable 0-24 VDC
Maximum of 5.8 amps continuous
Can be used with any 24 VDC tension brake. TCS-200 requires sense coil for operation.
Sense Coil - 275-3893
TCS-200-1 and TCS-200-1H can be used with or without sense coil.

Ambient Temperature	
TCS-200	-20° to $+115^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+46^{\circ} \mathrm{C}\right)$
TCS-200-1, TCS-200-1H	-20° to $+125^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+51^{\circ} \mathrm{C}\right)$
Sensor Inputs	
Remote Torque Adjust TCS-200, TCS-200-1,	
TCS-200-1H	1000 ohms
Roll Follower	
TCS-200	10 K ohms
TCS-200-1, TCS-200-1H	1000 ohms
Analog Voltage Input	
TCS-200-1, TCS-200-1H	$0-10$ VDC (optically isolated when used with an external 15-35 VDC supply)
Analog Current Input	
TCS-200-1, TCS-200-1H	$4-20 \mathrm{~mA}$ (optically isolated when used with an external 15-35 VDC supply)

Auxiliary Inputs

Brake Off (all models)
Removes output current to the brakes. Puts the brake at zero current.
Brake On (all models) Applies full voltage to the connected brake.

Front Panel Adjust
Tension Adjust
(all models)

Brake Mode Switch
(all models)
Indicators (all models) modes of operation to the brake.
lat
Green LED power indicator showing AC power is applied to the control.
Red LED short circuit indicator showing shorted output condition. Resettable by going to brake off mode with front panel switch.
General (all models) The control chassis must be considered NEMA 1 and should be kept clear of areas where foreign material, dust, grease, or oil might affect control operation.
Note: When used with other than MTB magnets, inductive load must be supplied - PN 275-3843. Consult factory for details.

Tension Controls

Analog Control for Electric Brake Systems

MCS-204

Remote/Analog control

The MCS-204 control, also completely solid state, is designed for manual or analog input control. The MCS-204 can control two 24 VDC tension brakes in parallel. It also has an antiresidual (magnetism) circuit, a brake on and a highly accessible terminal strip for rapid connection. It is designed for use with the MCS-166 power supply.
MCS-166 Power Supply (page 65).

Specifications	
Input	24-28 VDC @ 3 Amps (from MCS-166, 1.5 amps for single MCS-166; 3.0 amps from dual MCS-166's) or other power source.
Output	Pulse with modulated 0-24 VDC for 24 volt Warner Electric tension brakes.
Ambient Temperature	-20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.
External Inputs	
Torque Adjust	Controls tension by applying the desired amount of current to the brake.
Brake On	Applies full current to tension brake.
Brake Off	Removes brake current and applies antiresidual voltage to eliminate brake drag. Useful when changing rolls.
Operating Modes	
Local Torque Adjust	Knob on front panel.
Remote Torque Adjust	Via remote potentiometer.
Roll Follower	Using external potentiometer.
Current Loop	$1-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 10-50 \mathrm{~mA}$. Voltage Input: 0-14.5 VDC.
Mounting	Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/shelf or panel enclosures.

Requires enclosure, see page 66.

Typical System Configuration

The complete system consists of:

1. Tension brake
2. Analog tension control
3. Control power supply
4. Analog signal input (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Tension Controls

Analog Control for Electric Brake Systems

TCS-220
(P/N 6910-448-027)
(Shown with Housing)

The remote analog input control is an open loop system designed to allow easy interface with existing or specially designed customer controls to complete a closed loop system. The system also offers complete operator controllability for manual tensioning control.
TCS-167 Power Supply, (page 65).
Note: When used with other than MTB magnets, a resistor, 68 ohms, 25 watts, must be added. Consult factory for details.

Specifications	
Input	TCs-220 - 48 VDC @ 1.6 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6\% duty cycle, 30 sec. on time, 8-12 VDC @ 1.5 Amps. TCS-167 - 120 VAC, 50/60 Hz or 240 VAC, 50/60 Hz (Switch selectable).
TCs-220/TCS-167 - 0-270 mA/magnet (running); 270-500	
Output	
mA/magnet (stopping).	

Requires enclosure, see page 66.

Typical System Configuration

The complete system consists of:

1. Tension brake
2. Analog tension control
3. Control power supply
4. Analog signal input (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

MCS-208
(P/N 6910-448-067)

The MCS-208 control, also completely solid state, is designed for manual or analog input control. The MCS-208 features a highly accessible terminal strip for rapid connection, and it is designed for use with the MCS-166 Power Supply.

The remote analog input control is an open loop system designed to allow easy interface with existing or specially designed customer controls to complete a closed loop system. The system also offers complete operator controllability for manual tensioning control.
MCS-166 Power Supply, (page 65).
Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input Power	$24-28$ VDC, 0.5 amps maximum (from MCS-166 power supply or other source)
Outputs	Switch selectable current or voltage
	Voltage: 0-10 VDC
	Current: $1-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 10-50 \mathrm{~mA}$
	Will operate most electric to pneumatic transducers available.

Ambient Temperature $+32^{\circ}$ to $+120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+49^{\circ} \mathrm{C}\right)$.
External Inputs
Brake On Applies maximum output signal (voltage or current) to the
Brake Off Removes output from the transducer and applies minimum levels
Adjustments
Front Panel

Operating Modes Local torque adjust
Remote torque adjust
Roll follower
Analog voltage input
Analog current input
Mounting Available with panel mounting with exposed wiring or wall/shelf mounting with conduit entrances. Note: Must be ordered with wall/shelf enclosure or with panel mount enclosure.
Requires enclosure, see page 66.

Typical System Configuration

The complete system consists of:

1. Pneumatic tension brake
2. Analog tension control
3. Control power supply
4. Analog signal input (customer supplied)
5. E to P transducer

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

Tension Controls

Analog Splicer Control for Electric Brake Systems

TCS-320
(P/N 6910-448-043)

The analog splicer control provides dual brake functions with manual operator or analog input control requiring simultaneous brake tensioning and holding.

The system also offers complete operator controllability for manual tensioning control.
TCS-168 Power Supply, (page 65).
Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input	TCS-320 - 48 VDC @ 3.2 Amps continuous, 48 VDC @ 12 Amps intermittent, 1.6% duty cycle, 30 sec . on time, 8-12 VDC @ 3.0 Amps.
	TCS-168 - 120 VAC, $50 / 60 \mathrm{~Hz}$ or 240 VAC, $50 / 60 \mathrm{~Hz}$ (Switch selectable).
Output	TCS-320/TCS-168 - 0-270 mA/magnet (running); 270-500 mA/magnet (stopping) on controlled output channel, 0 to $90 \mathrm{~mA} /$ magnet (typ.) on holding output channel.

Ambient Temperature -20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.

External Inputs	
Torque Adjust	Controls tension by applying the desired amount of torque to the brake.
Brake On	Applies full current to tension brake.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Operating Modes	
Local Torque Adjust	Knob on front panel.
Remote Torque Adjust	Via 1K to 10K ohm potentiometer.
Roll Follower	Via 1k to 10k ohm potentiometer.
Current Loop	1-5 mA, 4-20 mA, 10-50 mA current source.
Voltage Input	$0-14.5 \mathrm{~V}$ DC.
Adjustments	
Torque Adjust/Span	Controls output manually in local torque mode. Sets maximum control span in remote torque adjust, roll follower, current loop, or voltage input mode.
Zero adjust	Potentiometer adjustment for setting zero output level. Front panel access.
Brake off input	Terminal strip connection which provides for removal of brake current and applies antiresidual current to eliminate brake drag.
Brake on input	Terminal strip connection applies full current to brake when activated regardless of input control signal. Used for emergency stops.
Mounting	TCS-168 - available with open frame or wall/shelf mounted enclosure with conduit entrance.
	TCS-320 - available as open frame or a NEMA 4 enclosure with remote control station.

Typical System Configuration

The complete system consists of:

1. Two tension brakes
2. Analog splicer control
3. Control power supply
4. Analog signal input (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension
adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

The TCS-320 can function as a splicer control or a dual brake control. With the use of the jumper board (included), the TCS-320 can control up to 24 magnets.

Tension Controls

Dancer Control for Electric Brake Systems

MCS-203
(P/N 6910-448-014)

The completely solid state MCS-203 Dancer Control Module is designed for automatic web tensioning through the use of a dancer roll. The MCS-203 can control two 24 VDC tension brakes in parallel. It works on the concept of a P-I-D controller and has internal P, I \& D adjustments for optimum performance regardless of brake size.
MCS-166 Power Supply, (page 65).

Specifications

Input	$24-28 \mathrm{VDC} \mathrm{@} \mathrm{3} \mathrm{Amps} \mathrm{(from} \mathrm{MCS-166}, \mathrm{1.5} \mathrm{amps} \mathrm{for} \mathrm{single}$ MCS-166; 3.0 amps from dual MCS-166's) or other power source.
Output	Pulse width modulated 0-24 VDC for 24 volt Warner Electric tension brakes.
Ambient Temperature	-20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.
External Inputs	Provides the feedback signal of dancer position and movement for input to the control.
Dancer Potentiometer	Applies full current to tension brake. Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Brake On	Nullifies integrator portion of control for faster brake response. Important for splicing and mid-roll starting.
Brake Off	Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/shelf or panel enclosures.
Antidrift Input	

[^2]
Typical System Configuration

The complete system consists of:

1. Tension brake
2. Dancer tension control
3. Control power supply
4. Pivot point sensor
5. Dancer roll assembly (customer supplied)

The control unit maintains a current output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the current from the control creates more or less brake torque for tension adjustability.

TCS-210
(P/N 6910-448-026)

This closed loop tension control system automatically controls tension on unwinding materials such as paper, film, foil, cloth and wire.
TCS-167 Power Supply, (page 65).
Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input	TCS-210 - 48 VDC @ 1.6 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 sec . on time, $8-12$ VDC @ 1.5 Amps.
	TCS-167 - 120 VAC, 50/60 Hz or 240 VAC, $50 / 60$ Hz (Switch selectable).
Output	TCS-210/TCS-167 - 0-270 mA/magnet (running); 270-500 $\mathrm{mA} /$ magnet (stopping).
Ambient Temperature	-20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.
External Inputs	
Dancer Potentiometer	Provides the feedback signal of dancer position and movement for input to the control.
Brake On	Applies holding brake voltage.
Anti-Drift Input	Nullifies integrator portion of control for faster brake response. Important at startup and for mid-roll starts.
Brake Off	Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
Mounting	TCS-210 - available as panel mounted with exposed wiring, or wall/shelf mounted with conduit entrance.
	TCS-167 - available with open frame or wall/shelf mounted enclosure with conduit entrance.

Requires enclosure, see page 66.

Typical System Configuration

The complete system consists of five components:

1. Tension brake
2. Dancer tension control
3. Control power supply
4. Pivot point sensor
5. Dancer roll assembly (customer supplied)
The weight of the dancer roll or loading on the dancer determines the tension on the web and the remainder of the system operates to hold the dancer roll as steady as possible. When the dancer position changes, the Warner Electric pivot point sensor tracks the direction and speed of the change and sends an electric signal to the closed loop control, which, in turn, relays a corrective signal to the Electro Disc tension brake. Increasing current to the Electro Disc
increases braking torque to elevate the dancer to the desired position, while reducing brake current lowers the dancer.

The closed loop dancer control system is completely automatic, limiting the need for operator involvement and the potential for inaccurate tension control. The system offers exceedingly rapid response that, in effect, corrects tension errors before they reach the work area of the processing machine.

MCS-207
(P/N 6910-448-066)

The dancer control, MCS-207 is designed for automatic web tensioning through the use of a dancer roll.The MCS-207 can control either a voltage to pneumatic or current to pneumatic transducer with an air operated clutch or brake. It works on the concept of a P-I-D controller and has internal adjustments of the P-I-D loops for optimum performance regardless of the brake size.
MCS-166 Power Supply, (page 65).
Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input	24-28 VDC, 0.5 amps maximum (from MCS-166 or other power source)
Output	Switch selectable current or voltage Voltage: 0-10 VDC Current: $1-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 10-50 \mathrm{~mA}$ Will operate most electric to pneumatic transducers available.
Ambient Temperature	$+32^{\circ}$ to $+120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+49^{\circ} \mathrm{C}\right)$.
Control Input	Pivot point sensor, MCS-605-1 or TCS-605-5
External Inputs Brake On	Applies maximum output signal (voltage or current) to the transducer
Brake Off	Removes output from the transducer and applies minimum level
Anti-Drift	Provides integrator reset function for mid-roll starting
Adjustments	
Front Panel	Dancer Position: sets dancer operating position Gain: Controls overall system response based on change of dancer input signal
Mounting	Available as panel mounted with exposed wiring, or wall/shelf mounted with conduit entrance. Note: Must be ordered with wall/shelf enclosure or with panel mount enclosure.

Requires enclosure, see page 66.

Typical System Configuration

The complete system consists of:

1. Pneumatic tension brake
2. Dancer tension control
3. Control power supply
4. Pivot point sensor
5. E to P transducer
6. Dancer roll assembly (customer supplied)

The control unit maintains an output to the tension brake based on an analog input or the manual setting of the control tension adjustment dials. Varying the signal from the control creates more or less brake torque for tension adjustability.

Tension Controls

Dancer Splicer Control for Electric Brake Systems

TCS-310
(P/N 6910-448-042)

This closed loop tension control system automatically controls tension on unwinding materials such as paper, film, foil, cloth and wire.

TCS-168 Power Supply, (page 65).
Note: When used with other than MTB magnets, a 68 ohm, 25 watt resistor must be added. Consult factory for details.

Specifications

Input

Output

Ambient Temperature

External Inputs

Dancer Potentiometer
Brake On
Anti-Drift Input
Brake Off

Mounting

TCS-310 - 48 VDC @ 3.2 Amps continuous, 48 VDC @ 12 Amps intermittent, 1.6% duty cycle, 30 sec . on time, 8-12 VDC @ 3.0 Amps.
TCS-168 - 120 VAC, $50 / 60$ Hz or 240 VAC, $50 / 60$ Hz (Switch selectable).

TCS-310/TCS-168 - 0-270 mA/magnet (running); 270-500 $\mathrm{mA} /$ magnet (stopping) on controlled output channel 0 to 90 mA holding channel.
-20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.

Provides the feedback signal of dancer position and movement for input to the control. Applies holding brake voltage.
Nullifies integrator portion of control for faster brake response. Important for start-ups.
Removes brake current and applies antiresidual current to eliminate brake drag. Useful when changing rolls.
TCS-310 - available as open frame or as NEMA 4 enclosure with remote control station.
TCS-168 - available with open frame or wall/shelf mounted enclosure with conduit entrance.

Typical System Configuration

The complete system consists of five components:

1. Two tension brakes
2. Dancer splicer control
3. Control power supply
4. Pivot point sensor
5. Dancer roll assembly (customer supplied)
The weight of the dancer roll or loading on the dancer determines the tension on the web and the remainder of the system operates to hold the dancer roll as steady as possible. When the dancer position changes, the Warner Electric pivot point sensor tracks the direction and speed of the change and sends an electric signal to the closed loop control, which, in turn, relays a corrective signal to the Electro Disc tension brake. Increasing current to the Electro Disc
increases braking torque to elevate the dancer to the desired position, while reducing brake current lowers the dancer.

The closed loop dancer control system is completely automatic, limiting the need for operator involvement and the potential for inaccurate tension control. The system offers exceedingly rapid response that, in effect, corrects tension errors before they reach the work area of the processing machine.

MCS-166
(P/N 6910-448-013)
(Shown with Housing)

Power Supply for
MCS-203, MCS-204, MCS-207, and MCS-208 Controls
Warner Electric's MCS-166 is the companion power supply module to be used with MCS-203 and MCS-204 tension controls. The MCS-166 supplies the 24-28 VDC that these systems require. The MCS-166 is a modular unit designed to couple with its respective control or it can be mounted separately. It is also fused for overload protection, has a voltage indicator light, and is internally protected against 240 VAC input when set for 120 VAC.

Specifications

Input

120 VAC $50 / 60 \mathrm{~Hz}$ or 240 VAC $50 / 60 \mathrm{~Hz}$ (switch selectable).

Output

24-28 VDC (1.5 Amps).
Note: For dual brake application, two
MCS-166's are required, 3.0 amps output.
Ambient Temperature
-20° to $+113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$.

Mounting

Available for panel mounting with exposed wiring or wall/shelf mounting with conduit entrance. Must be ordered with either wall/shelf or panel enclosures. Requires enclosure, see page 66.

Magnet Selector Static Switch

The magnet selector switch allows magnets to be dynamically or statically added or removed from the tension system to be tailored to the application need. Examples include shedding magnets for narrow, light webs near core or adding magnets for emergency stops.

TCS-167
(P/N 6910-448-025)

The TCS-167 power supply is designed to provide the correct power input to MCS-207, TCS-210, and TCS-220 tension controls. Its switch selectable input allows the user to adapt to 120 or 240 VAC. It has dual voltage circuits to provide low voltage power and anti-residual output as well as power to operate a brake. The TCS-167 is available with an enclosure or open frame for control panel mounting.

Specifications

Input

120 VAC or $220 / 240$ VAC, $\pm 10 \%, 50 / 60 \mathrm{~Hz}$, 1 phase. (switch selectable)

Output

Unregulated 9-12 VDC @ 1.5 Amps
Unregulated 48 VDC @ 1.6 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 seconds on time.

Ambient Temperature

$-20^{\circ} \mathrm{F}$. to $+113^{\circ} \mathrm{F}$. $\left(-29^{\circ} \mathrm{C}\right.$. to $+45^{\circ} \mathrm{C}$. $)$

Mounting

Open frame or enclosed wall/shelf mount with conduit entrance

TCS-168
(P/N 6910-448-032)

The TCS-168 power supply is designed to provide the correct power input to the TCS-310 Dancer Splicer Control and the TCS-320 Analog Splicer Control. Its switch selectable input allows the user to adapt to 120 or 240 VAC. It has dual voltage circuits to provide low voltage power and anti-residual output as well as power to operate two brakes. The TCS-168 is available with an enclosure or open frame for control panel mounting.

Specifications

Input

120 VAC or 220/240 VAC, +_ $10 \%, 50 / 60 \mathrm{~Hz}$, 1 phase. (switch selectable)

Output

Unregulated 9-12 VDC @ 3 Amps Unregulated 48 VDC @ 3.2 Amps continuous, 48 VDC @ 6 Amps intermittent, 1.6% duty cycle, 30 seconds on time.

Ambient Temperature

$-20^{\circ} \mathrm{F}$. to $+113^{\circ} \mathrm{F}$. $\left(-29^{\circ} \mathrm{C}\right.$. to $+45^{\circ} \mathrm{C}$. $)$

Mounting

Open frame or enclosed wall/shelf mount with conduit entrance

Each selector switch provides two circuits, each capable of switching up to four magnets.

How to Order

To order, specify Magnet Selector Static Switch 6910-101-007.

Dimensions

TCS-200-1

Wall/Shelf Mount

Tension Controls - For use with MCS-203, MCS-204, MCS-207 or MCS-208 order part number 6910-448-016.
For use with TCS-210 or 220, order part number 6910-448-029.
Power Supplies - For use with MCS-166, order part number 6910-448-019.

Panel Mount

Tension Controls - For use with MCS-203, MCS-204, MCS-207 or MCS-208 order part number 6910-448-015.
For use with TCS-210 or 220, order part number 6910-448-028.
Power Supplies - For use with MCS-166, order part number 6910-448-018.

Ribbon Cable

A ribbon cable has been added to the rear terminal board of the MCS203/204/207/208 and MCS-166 enclosures to improve performance and reliability. The upgrade is fully retrofitable and enclosure part numbers have not changed.

Dual Brake Controls

TCS-310, TCS-320

Power Supplies
TCS-167, TCS-168
(P/N 6910-448-033)

Macza

Selection Guide

Selection Guide

Selecting the proper clutch or brake starts with collecting the appropriate data. See the data form on page 13. Once the data is collected, go through the various calculations for thermal and torque requirements. Examples are on pages 16-28. At this point, a general selection can be made from these two pages. Then go to the applicable page for further details on the unit such as mounting considerations and dimensions.

Finally, a control system must be chosen - several factors will influence this choice, such as degree of accuracy required (open vs. closed loop), physical restraints in the machine (dancer or load cell). Go to the controls section on page 44 for full specifications and details on these various controls systems.

Once control system is selected, determination of dancer, load cell, or analog system can be made. Dancer design considerations can be found on pages 33-37. Load cell design considerations and sizing can be found on pages 3843.

You are now well on the way to specifying the best tension control system available.

Brakes \& Clutches

Magnetic Particle

Heat Transfer Capacity

Dynamic Torque Rating	Continuous Operation	On-0ff Operation	Typical Applications and Comments	Page No.
0.50-256 lb.ft.	.02-1.1 HP	.03-2.12 HP	Narrow to medium width web machines such as business forms presses. Also good on wire pay-offs. A low-cost alternative in many applications.	72
7-62 lb.ft. Up to $83 \mathrm{lb} . \mathrm{ft}$. with overcurrent	. 3 to 9.9 HP	-	Light tension on narrow web paper or plastic film, such as bag making machines and printing presses. Clutch provides a good, economical solution on many winders.	78
$0.21-592 \mathrm{lb} . \mathrm{ft}$. Up to $1,120 \mathrm{lb} . \mathrm{ft}$. with overcurrent	$25-2.75$ HP	-	The work horse of the brake line. Wide dynamic torque range. Good for business forms presses, wire pay-offs, slitters, coaters. Excellent choice for closed loop as well as open loop systems.	86
0-65 lb.in.	3-150 watts	-	Excellent problem solver for difficult light tension applications. Particularly good for nip-roll control where diameter compensation is not required. Perfect solution for wire braiders and twisters where pay-off is spinning. No control required.	98
.17-578 lb.ft.	10-400 watts	-	Excellent solution where wear particles of friction disc units cause a problem. Very precise torque regulation. Will operate with great accuracy at lower speeds than friction disc units. Staying within thermal capacity is critical for long life.	106

Heat Transfer Capacity (Continued)

Dynamic Torque Rating	Continuous Operation	On-0ff Operation	Typical Applications and Comments	Page No.
$5.2-1,328 \mathrm{lb} . \mathrm{ft}$.	3.2-6.4 HP	$3.5-7.0 \mathrm{HP}$	The brake of choice in the corrugator industry due to long life and ease of maintenance. Other converting industry applications apply equally.	130
$0.16-1,180 \mathrm{lb} . \mathrm{ft}$.	$\begin{aligned} & \text { 1.5-6.0 HP } \\ & \text { 4.0-22.0 HP } \\ & \text { w/forced air } \\ & \text { cooling } \end{aligned}$	-	This brake is well accepted among converting equipment manufacturers worldwide. Slitters, coaters, and laminators are but a few of the many applications.	134
$3.8-1,785 \mathrm{lb} . \mathrm{ft}$.	$1-3.2 \mathrm{HP}$ 4-6.5 HP with optional blower	-	The multiple actuator selection possibilities make this an excellent choice for machines running a variety of materials on a wide range of tensions.	138
0.6-3,180 lb.ft.	$\begin{aligned} & 1-17 \mathrm{HP} \\ & 4-18 \mathrm{HP} \end{aligned}$ with optional blower	-	Compatiblities of various actuator and friction pad combinations allow for wide range of applications.	144

TB Series - Basic Tension Brakes

System Features

- Full roll to core control
- Consistent tension, even during flying splices, rapid starts and emergency stops
- Eliminates web flutter to allow better registration control
- Electronic System responds in milliseconds
- Dramatically reduces material waste, downtime and maintenance
- Total systems capability-worldwide distribution-local professional service.

Features -

Basic Tension Brakes

- Ideal for light duty, light load unwind tension applications
- Cost effective
- Compact package size
- Eight models
- Small sizes, from 1.7" dia. to 15.25 " dia.
- . 025 to 1.09 thermal horsepower capacity

Complete Control Capability

Warner Electric offers two functionally different controls and a companion power supply for all models of TB Series 24 VDC tension brakes. All three units offer compact dimensions and modular design for easy, low cost maintenance. Both controls (MCS-203/MCS204) and the power supply are furnished with either a panel mount or wall/shelf mount enclosure at no added cost. Controls information starts on page 44.

Unit Size	Energy Rate		Maximum RPM	Minimum Torque (lb.ft.)	Maximum 3 Dynamic Torque (lb.ft.)	Amps	Ohms	Watts
TB-170	0.02 HP	0.03 HP	5000	0.000	0.500	. 215	111.2	5.16
TB-260	0.04 HP	0.06 HP	5000	0.060	1.700	. 400	60	9.6
TB-425	0.08 HP	0.13 HP	5000	0.120	5.200	. 317	76	7.6
TB-500	0.13 HP	0.24 HP	5000	0.150	18.500	1.0	24	24
TB-825	0.27 HP	0.48 HP	3000	0.360	43.200	1.18	20	28
TB-1000	0.48 HP	0.88 HP	2400	0.790	88.000	1.22	20	29
TB-1225	0.70 HP	1.27 HP	2000	1.430	172.000	1.08	22	26
TB-1525	1.09 HP	2.12 HP	1600	2.130	256.000	1.21	20	29

Notes

1. Alternate duty operation is defined as 30 minutes run-time with 30 minutes off-time
2. Minimum torque is with Warner Electric tension control providing anti-residual current to brake in off state. Minimum torques will be higher when controls without anti-residual current are used.
3. Dynamic torques are based on 30 RPM slip speed

* Mounting holes are within .010" (.254) of true position relative to pilot diameter.
inches (mm)

\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}
$2.437 / 2.435$	$.204 / .187$	2.125	$\# 8-32$
$(61.90 / 61.85)$	$(5.18 / 4.75)$	(53.98)	UNC-3A
$3.500 / 3.498$	$.204 / .187$	3.125	$\# 8-32$
$(88.90 / 88.85)$	$(5.18 / 4.75)$	(79.38)	UNC-3A
$5.625 / 5.623$	$.296 / .280$	5.000	$\# 1 / 4-20$
$(142.88 / 142.82)$	$(7.52 / 7.11)$	(12.70)	UNC-3A

Bore and Keyway Data

For replacement parts list and exploded view drawing, see page 76.
Note: All dimensions are nominal unless otherwise noted.

TB Series - Basic Tension Brakes

inches (mm)

Model	Max. Max.	B	C Max.	\mathbf{D}	E	F	G Max.	H Dia.	J	
TB-825	3.671	1.312	.562	5.656	1.593	1.500	8.468	4.625	.609	
	(93.24)	(33.32)	(14.27)	(143.66)	(401.46)	(38.10)	(215.09)	(117.48)	(15.47)	(55.55)
TB-1000	4.109	1.453	.562	6.531	1.906	1.750	10.187	6.250	.609	3.875
	(104.37)	(36.91)	(14.27)	(165.89)	(48.41)	(44.45)	(258.75)	(158.75)	(15.47)	(94.83)
TB-1225	5.390	1.6740	.562	7.531	3.000	3.000	12.437	6.875	.609	4.500
	(136.91)	(41.66)	(14.27)	(191.29)	(76.20)	(76.20)	(315.90)	(174.63)	(15.47)	(114.30)

Model	K Min.	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P} Max.	\mathbf{Q}	\mathbf{R}	\mathbf{S}	
	.093	.062	$5 / 16-18$	1.546	.921	$3.503 / 3.501$	3.750	6.406	$.358 / .338$	
	(2.36)	(12.57)	UNC-3A	(39.27)	(23.39)	$(88.98 / 88.93)$	(95.25)	(162.71)	$(9.09 / 8.59)$	(107.95)
TB-1000	.093	.062	$5 / 16-18$	1.546	.921	$5.378 / 5.376$	3.750	7.687	$.358 / .338$	6.125
	(2.36)	(1.57)	UNC-3A	(39.27)	(23.39)	$(136.60 / 136.55)$	(95.25)	(195.25)	$(9.09 / 8.59)$	(155.58)
TB-1225	.093	.062	$5 / 16-18$	1.546	.921	$6.378 / 6.376$	3.750	8.687	$.358 / .338$	
	(2.36)	(1.57)	UNC-3A	(39.27)	(23.39)	$(162.00 / 161.95)$	(95.25)	(220.65)	$(9.09 / 8.59)$	(184.15)

See page 155 for specific bushing part numbers.

Bore and Keyway Data

Model \#	Part \#	Voltage	Bushing	Bore	Keyway
TB-825	$\begin{gathered} 5311-2 \\ 5311-24 \end{gathered}$	$\begin{gathered} 6 \mathrm{~V} \\ 24 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Dodge } 1615 \\ & \text { (see pg } 159 \text { for } \\ & \text { for specific P/N) } \end{aligned}$	1/2-9/16	1/8" $\times 1 / 16{ }^{11}$
				5/8-7/8	$3 / 16$ " $\times 132$ "
				15/16-1-1/4	1/4" $\times 1 / 8^{\prime \prime}$
				1-5/16-1-3/8	5/16" $\times 5 / 32^{\prime \prime}$
				1-7/16-1-1/2	$3 / 8 " \times 3 / 16{ }^{\prime \prime}$
				1-9/16-1-5/8	$3 / 8 " \times 3 / 16{ }^{\prime \prime}$
TB-1000	$\begin{gathered} 5312-1 \\ 5312-24 \end{gathered}$	$\begin{gathered} 6 \mathrm{~V} \\ 24 \mathrm{~V} \end{gathered}$	Dodge 2517 (see pg 159 for for specific P/N)	1/2-9/16	$1 / 8^{\prime \prime} \times 1 / 16^{\prime \prime}$
				5/8-7/8	$3 / 166^{\prime \prime} \times 3 / 32^{\prime \prime}$
				15/16-1-1/4	1/4" $\times 1 / 8 "$
				1-5/16-1-3/8	5/16" \times 5/32"
				1-7/16-1-3/4	$3 / 8 " \times 3 / 16 "$
				1-13/16-2-1/4	1/2" $\times 1 / 4{ }^{\prime \prime}$
				2-5/16-2-1/2	5/8" $\times 5 / 16{ }^{\prime \prime}$

For replacement parts list and exploded view drawing, see page 77.
Note: All dimensions are nominal unless otherwise noted.

Dimensions

TB-1525

inches (mm)								* Mounting holes are within .010 " (.254) of true position relative to pilot diameter.			
Model	A Max.	B	C Max.	D	$\begin{gathered} \mathrm{E} \\ \mathrm{Dia} . \end{gathered}$	F	G	H Dia.	$\begin{gathered} \text { I } \\ \text { Dia. } \end{gathered}$	$\underset{\text { Dia. }}{\text { J. }}$	$\begin{gathered} \mathrm{K} \\ \text { Dia. } \end{gathered}$
TB-1525	$\begin{gathered} 4.531 \\ (115.09) \\ \hline \end{gathered}$	$\begin{gathered} 1.750 \\ (44.45) \\ \hline \end{gathered}$	$\begin{gathered} .562 \\ (14.27) \\ \hline \end{gathered}$	$\begin{gathered} 9.187 \\ (233.35) \\ \hline \end{gathered}$	$\begin{gathered} 6.000 \\ (152.40) \\ \hline \end{gathered}$	$\begin{aligned} & 3.000 \\ & (76.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.000 \\ & (76.2) \\ & \hline \end{aligned}$	$\begin{gathered} 15.562 \\ (395.27) \\ \hline \end{gathered}$	$\begin{gathered} 9.500 \\ (241.30) \\ \hline \end{gathered}$	$\begin{gathered} .609 \\ (15.47) \\ \hline \end{gathered}$	$\begin{gathered} 7.125 \\ (180.98) \\ \hline \end{gathered}$
Model	L	M Min.	N	0	$\begin{gathered} \text { P } \\ \text { Max. } \end{gathered}$		Q	R	S	T	U
TB-1525	$\begin{gathered} .093 \\ (2.36) \end{gathered}$	$\begin{gathered} .062 \\ (1.57) \end{gathered}$	$\begin{aligned} & \text { 5/16-18 } \\ & \text { UNC-3A } \end{aligned}$	$\begin{gathered} .921 \\ (23.39) \end{gathered}$	$\begin{gathered} 1.546 \\ (39.27) \end{gathered}$	$\begin{array}{r} 9.00 \\ (228.6 \end{array}$	$\begin{aligned} & 2 / 9.000 \\ & 5 / 228.60) \end{aligned}$	$\begin{gathered} 3.750 \\ (95.25) \end{gathered}$	$\begin{gathered} 10.343 \\ (262.71) \end{gathered}$	$\begin{gathered} .358 / .338 \\ (9.09 / 8.59) \end{gathered}$	$\begin{gathered} 9.750 \\ (247.65) \end{gathered}$

[^3]Note: All dimensions are nominal unless otherwise noted.

7クAGZ\&ீ MEX (55) 53632331

TB-170, TB-260, TB-425

Part Numbers

Item No.	Description	TB-500	
		Qty.	P/N
1	Bushing Taperlock*		180-0116 to 180-0128
2	Hub, Armature	1	5300-541-004
3	Armature	1	110-0047
4	Magnet Mounting Acc. Inside Mounted	2	5102-101-001
	Outside Mounted	1	5300-101-008
5	Drive Pin	3	5300-101-003
6	Magnet		
	6 Volt I.M.	1	5300-631-019
	6 Volt 0.M.	1	5300-631-024
	24 Volt I.M.	1	5300-631-040
	24 Volt O.M.	1	5300-631-051
6-1	Terminal Accessory	1	5311-101-001
7	Conduit Box	1	5200-101-010

TB-825, TB-1000, TB-1225, TB-1525

Part Numbers

Item		TB-825		TB-1000		TB-1225		TB-1525	
No.	Description	Qty.	P/N	Qty.	P/N	Qty.	P/N	Qty.	P/N
1	Bushing Taperlock*	1	180-0131 to 180-0149	1	180-0185 to 180-0217	1	180-0262 to 180-0295	1	180-0262 to 180-0295
2	Hub, Armature	1	540-0394	1	540-0313	1	540-0015	1	540-0314
3	Armature	1	5301-111-019	1	5302-111-021	1	5303-111-011	I	5304-111-005
4	Magnet Mounting Acc. Inside Mounting	1	5321-101-001	1	5321-101-001	1	5321-101-001	2	5321-101-001
5	Drive Pin \& Retainer	3	5301-101-001	3	5301-101-001	4	5301-101-001	4	5301-101-001
6	Magnet	1		1		1		1	
	6 Volt I.M.		5311-631-024		5312-631-018		5313-631-017		5314-631-002
	24 Volt I.M.		5311-631-040		5312-631-034		5313-631-031		5314-631-022
6-1	Terminal Accessory	1	5311-101-001	1	5311-101-001	1	5311-101-001	1	5311-101-001
7	Conduit Box	1	5200-101-011	1	5200-101-011	1	5200-101-011	1	5200-101-011

[^4]
Electric Brakes and Clutches

ATT Series - Advanced Technology Brakes and Clutches

Advanced Technology A new design concept!

Warner Electric's ATT Series clutches and brakes are rugged and durable.

Besides providing the ultimate in long life and durability, the ATT units are easily repairable... and, for the first time, mounting a standard sheave, pulley or sprocket to the clutch is a snap.

AT Clutches and Brakes are completely assembled at the factory and have been specifically designed to match the torque ratings of standard motors, reducers, and other power transmission components. Easy to select and easy to install.

Features:

ATT Tension Clutches

 and Brakes- Ideal for intermediate range applications
- Both brake and clutch models for winders and unwinders
- 284 to .9 thermal horsepower capacity
- Brake wear faces replaceable on the shaft for limited downtime
- Full range of control options. See pages 44-45.

Unit Size	Maximum RPM	Continuous 1 Dynamic Torque	Overcurrent E-Stop Torque
ATT Brakes			
ATTB-25	3600	$8 \mathrm{lb} . \mathrm{ft}$.	$15 \mathrm{lb} . f \mathrm{ft}$
ATTB-55	3600	$15 \mathrm{lb} . \mathrm{ft}$	$21 \mathrm{lb} . f t$
ATTB-115	3600	$62 \mathrm{lb} . f \mathrm{ft}$.	$83 \mathrm{lb} . \mathrm{ft}$.
ATT Clutches			
ATTC-25	3600	$7 \mathrm{lb.ft}$.	$* 2$
ATTC-55	3600	$12 \mathrm{lb} . \mathrm{ft}$.	$*$
ATTC-115	3600	$41 \mathrm{lb.ft}$.	$*$

Notes

1. Dynamic torque is constant over a speed range of 0-600 RPM
2. Overcurrent is not used on clutch applications for tensioning

Electric Brakes and Clutches

ATT Series - Advanced Technology Brakes and Clutches

Special Coil Designs

High temperature coil wire improves durability in the face of high temperature environments and high cycle rates or high inertia cycling that generate large amounts of heat. High temperature Teflon leads are very resistant to accidental abrasion and cutting.

Replaceable Friction Discs

Friction disc is designed as separate assembly from clutch rotor or brake magnet, allowing for replacement of the wear surface without the expense of replacing other valuable unit components. Provides superior wear life with reduced engagement noise level.

Advanced Technology

 Tension Clutches and Brakes- Ideal for intermediate range applications
- Both brake and clutch models for winders and unwinders
- 284 to .9 thermal horsepower capacity
- Wear faces replaceable on the shaft for limited downtime
- Full range of control options

Complete Control Capability

Optional Accessories

Warner Electric offers a number of optional accessories as well as rebuild kits, which may make an ATT clutch or
brake easier to apply to your machine. See pages 44-45 for controls.

		Clutch Unit	Model Restraining Strap	Friction Face Replacement	Rebuild
Clutch	No.	ATTC-25	$5162-101-004$	$5161-101-008$	$5161-101-009$
	ATTC-55	$5162-101-004$	$5162-101-008$	$5162-101-009$	
	ATTC-115	$5163-101-004$	$5163-101-008$	$5163-101-009$	
Brake	ATTB-25	-	$5161-101-008$	-	
	ATTB-55	-	$5162-1011008$	-	
	ATTB-115	-	$5163-101-008$	-	

Bore Sizes/Part Numbers

Size	$\begin{aligned} & \text { Bore } \\ & \text { Size } \\ & \text { (Inch) } \end{aligned}$	24 VDC		90 VDC	
		Clutch (ATTC)	Brake (ATTB)	Clutch (ATTC)	Brake (ATTB)
ATT-25	1/2"	5161-271-021	5191-6	5161-271-025	5191-10
	5/8"	5161-271-022	5191-7	5161-271-026	5191-11
	3/4"	5161-271-023	5191-8	5161-271-027	5191-12
	7/8"	5161-271-024	5191-9	5161-271-028	5191-13
ATT-55	$3 / 4{ }^{\prime \prime}$	5162-271-021	5192-6	5162-271-025	5192-10
	7/8"	5162-271-022	5192-7	5162-271-026	5192-11
	$1 "$	5162-271-023	5192-8	5162-271-027	5192-12
	1-1/8"	5162-271-024	5192-9	5162-271-028	5192-13
ATT-115	1-1/8"	5163-271-021	5193-6	5163-271-025	5193-10
	1-1/4"	5163-271-022	5193-7	5163-271-026	5193-11
	1-3/8"	5163-271-023	5193-8	5163-271-027	5193-12
	1-1/2"	5163-271-024	5193-9	5163-271-028	5193-13

Maciza

 Electric Brakes and Clutches

 Electric Brakes and Clutches}

ATT Series - Advanced Technology Brakes and Clutches

ATTB Brake

Specifications

Unit	Model No.	Mechanical Data			Electrical Data		
		Total Weight (Ibs.)	Max Speed (RPM)	Inertia $W^{2}{ }^{2}$ (lb.ft. ${ }^{2}$)	24 VDC		
					Resistance (ohms)	Current (amperes)	Power (watts)
	ATTB-25	7	3600	0.038	20.6	1.16	28.0
Brake	ATTB-55	15	3600	0.126	19.6	1.22	29.4
	ATTB-115	24	3600	0.383	16.5	1.46	34.9

Electric Brakes and Clutches

Customer shall maintain:

1. Squareness of brake mounting face with armature hub shaft within .006 T.I.R.
2. Concentricity of brake mounting pilot diameter with armature hub shaft within .010 T.I.R.

Shaft Bore and
Keyway Dimensions

Model	Unit Bore		Key
ATTB-55	1.0025	25.46	$1 / 4 \mathrm{Sq}$.
	1.0005	25.41	
ATTB-55	1.1275	28.64	$1 / 4 \mathrm{Sq}$.
ATTB-115	1.1255	28.59	
ATTB-115	1.2525	31.81	$1 / 4 \mathrm{Sq}$.
	1.2505	31.76	
ATTB-115	1.7775	34.99	$5 / 16 \mathrm{Sq}$.
	1.3755	34.94	
ATTB-115	1.5025	38.16	$3 / 8 \mathrm{Sq}$.
	1.5005	38.11	

inches (mm)

	A Model Max. Dia.	Max.	C
Min.			
Dia.			
ATTB-25	4.822	2.730	.264
	(122.48)	(69.34)	(6.70)
ATTB-55	6.271	3.010	.330
	(159.28)	(77.97)	(8.38)
ATTB-115	7.906	3.625	.330
	(200.81)	(12.07)	(8.38)

inches (mm)

	D	E	F	G	H	J	L	M	P
Model	Max.	Nom.	Max.	Dia.	Dia.	Nom.	Max.	Nom.	Max.
ATTB-25	1.345	4.748	3.767	5.250	$5.625 / 5.623$	1.544	.225	3.586	2.080
	(34.16)	(120.60)	(95.68)	(133.35)	$(142.87 / 142.82)$	(39.22)	(5.71)	(91.08)	(52.83)
ATTB-55	1.765	5.37	3.767	6.875	$7.315 / 7.313$	1.544	.491	4.208	1.960
	(44.83)	(136.40)	(95.68)	(174.62)	$(187.33 / 181.21)$	(39.22)	(12.47)	(106.88)	(49.87)
ATTB-115	2.150	6.278	3.767	8.500	$9.000 / 8.998$	1.544	.463	5.116	3.105
	(54.61)	(159.46)	(95.68)	(215.90)	$(228.60 / 228.55)$	(39.22)	(11.76)	(129.95)	(78.87)

For replacement parts list and exploded view drawing, see page 84.
Note: All dimensions are nominal unless otherwise noted.

Electric Brakes and Clutches

ATT Series - Advanced Technology Brakes and Clutches

ATTC Clutch

 unit in most applications.
Easily visible friction disc indicates when replacement is necessary.

Specifications

Model No.	Mechanical Data			Electrical Data		
	Total Weight (lbs.)	Max Speed (RPM)	Inertia W^{2} (lb.ft. ${ }^{2}$)	24 VDC		
				Resistance (ohms)	Current (amperes)	Power (watts)
ATTC-25	8	3600	0.048	20.6	1.16	28.0
ATTC-55	18	3600	0.173	19.6	1.22	29.4
ATTC-115	28	3600	0.483	16.5	1.46	34.9

Dimensions

inches (mm)

Model	A Max. Dia.	B ${ }_{\text {Max. }}$	C Nom.	D Nom. Dia.	E Max.	F Max.	G Max.	H Max.	$\underset{\text { Max }}{\text { J }}$ Dia.	K Max.	L Max.	M Max.	T Nom.
ATTC-25	$\begin{gathered} 3.60 \\ (91.44) \end{gathered}$	$\begin{gathered} 4.39 \\ (111.51) \end{gathered}$	$\begin{gathered} 2.375 \\ (60.33) \end{gathered}$	$\begin{gathered} 1.080 \\ (27.43) \end{gathered}$	$\begin{gathered} 4.748 \\ (120.60) \end{gathered}$	$\begin{gathered} 3.767 \\ (95.68) \end{gathered}$	$\begin{gathered} 3.282 \\ (83.36) \end{gathered}$	$\begin{gathered} 5.11 \\ (129.79) \end{gathered}$	$\begin{gathered} 4.822 \\ (122.49) \end{gathered}$	$\begin{gathered} 1.68 \\ (42.67) \end{gathered}$	$\begin{gathered} 1.003 / .991 \\ (25.48 / 25.17) \end{gathered}$	$\begin{gathered} .715 / .703 \\ (18.16 / 17.86) \end{gathered}$	$\begin{gathered} .375 \\ (9.53) \end{gathered}$
ATTC-55	$\begin{gathered} 3.95 \\ (100.33) \end{gathered}$	$\begin{gathered} 4.935 \\ (125.35) \end{gathered}$	$\begin{gathered} 2.925 \\ (74.30) \end{gathered}$	$\begin{gathered} 1.40 \\ (35.56) \end{gathered}$	$\begin{gathered} 5.182 \\ (131.62) \end{gathered}$	$\begin{gathered} \hline 3.767 \\ (95.68) \end{gathered}$	$\begin{gathered} 4.032 \\ (102.41) \end{gathered}$	$\begin{gathered} 5.11 \\ (129.79) \end{gathered}$	$\begin{gathered} 6.275 \\ (159.39) \end{gathered}$	$\begin{gathered} 1.817 \\ (46.15) \end{gathered}$	$\begin{gathered} 1.113 / 1.101 \\ (28.27 / 27.97) \end{gathered}$	-	$\begin{gathered} .375 \\ (9.53) \end{gathered}$
ATTC-115	$\begin{gathered} 5.254 \\ (133.45) \end{gathered}$	$\begin{gathered} 5.977 \\ (151.82) \end{gathered}$	$\begin{gathered} 3.102 \\ (78.79) \end{gathered}$	$\begin{gathered} 1.86 \\ (47.24) \end{gathered}$	$\begin{gathered} 6.089 \\ (154.66) \end{gathered}$	$\begin{gathered} 3.767 \\ (95.68) \end{gathered}$	$\begin{gathered} 4.246 \\ (107.85) \end{gathered}$	$\begin{gathered} 10.11 \\ (256.79) \end{gathered}$	$\begin{gathered} 7.906 \\ (200.81) \end{gathered}$	$\begin{gathered} 2.467 \\ (62.66) \end{gathered}$	$\begin{gathered} \hline 1.539 / 1.523 \\ (39.09 / 38.68) \end{gathered}$	-	$\begin{gathered} .375 \\ (9.53) \end{gathered}$

For replacement parts list and exploded view drawing, see page 85.
Note: All dimensions are nominal unless otherwise noted.

Electric Brakes and Clutches
ATt Series - Advanced Technology Brakes and Clutches

Dimensions

Shaft Bore and
Keyway Dimensions

Model	Unit Bore		Key
ATTC-25	$\frac{.5025}{.5005}$	$\left(\frac{12.76}{12.71}\right)$	$1 / 8 \mathrm{Sq}$.
ATTC-25	$\frac{.6275}{.6255}$	$\left(\frac{15.94}{15.89}\right) 3 / 16 \mathrm{Sq}$.	
ATTC-25	$\frac{.7525}{.7505}$	$\left(\frac{19.11}{19.06}\right) 3 / 16 \mathrm{Sq}$.	
ATTC-55	. .7		
ATTC-25	$\underline{.8775}$	$\left(\frac{22.29}{22.24}\right) 3 / 16 \mathrm{Sq}$.	
ATTC-55	.8755		

Model	Unit Bore	Key
ATTC-55	$\frac{1.0025}{1.0005}\left(\frac{25.46}{25.41}\right)$	$1 / 4 \mathrm{Sq}$.
ATTC-55	$\frac{1.1275}{1.1255}\left(\frac{28.64}{28.59}\right)$	$1 / 4 \mathrm{Sq}$.
ATTC-115		
ATTC-115	$\frac{1.2525}{1.2505}\left(\frac{31.71}{31.76}\right)$	$1 / 4 \mathrm{Sq}$.
ACCT-115	$\frac{1.3775}{1.3755}\left(\frac{34.99}{34.94}\right) 5 / 16 \mathrm{Sq}$.	
ATTC-115	$\frac{1.5025}{1.5005}\left(\frac{38.16}{38.11}\right)$	$3 / 8 \mathrm{Sq}$.

inches (mm)

Model	No. of Holes	N Thread Size	Max. Depth	Bolt Circle	0 Nom.	Nom.	R Min.	S Min.
ATTC-25	3	1/4-20	. 500	3.00	$\begin{gathered} .500 \\ (12.7) \end{gathered}$	$\begin{gathered} \hline 3.586 \\ (91.08) \end{gathered}$	$\begin{gathered} .752 \\ (19.08) \end{gathered}$	$\begin{gathered} .279 \\ (7.09) \end{gathered}$
ATTC-55	4	1/4-20	. 635	3.50	$\begin{gathered} .500 \\ (12.7) \end{gathered}$	$\begin{gathered} 4.156 \\ (105.56) \end{gathered}$	$\begin{gathered} .722 \\ (18.34) \end{gathered}$	$\begin{gathered} .265 \\ (6.73) \end{gathered}$
ATTC-115	4	5/16-18	. 830	4.75	$\begin{gathered} .500 \\ (12.7) \end{gathered}$	$\begin{gathered} 4.927 \\ (125.15) \end{gathered}$	$\begin{gathered} .504 \\ (12.80) \end{gathered}$	$\begin{gathered} .265 \\ (6.73) \end{gathered}$

Bore-to-Size Data

U Bore Dia.	V Keyway Height	W Keyway Width	X Bolt Circle
$2.502 / 2.500$	$2.601 / 2.591$	$.1905 / .1885$	3.00
$(63.55 / 63.50)$	$(66.06 / 65.81)$	$(4.84 / 4.79)$	(76.20)
$3.002 / 3.000$	$3.099 / 3.089$	$.1905 / .1885$	3.50
$(76.25 / 76.20)$	$(78.71 / 78.46)$	$(4.84 / 4.79)$	(88.90)
$4.002 / 4.000$	$4.127 / 4.117$	$.378 / .376$	4.50
$(101.65 / 101.60)$	$(104.83 / 104.57)$	$(9.60 / 9.55)$	(114.30)

For replacement parts list and exploded view drawing, see page 85
Note: All dimensions are nominal unless otherwise noted.

APR
 InDUSTRIAL
 7ク月a乙a＇MEX（55） 53632331
 DIST．AUTORIZADO
 MTY（81） 83541018
 ventas＠industrialmagza．com
 Brake Assemblies and Part Numbers
 ATT Series－Advanced Technology Brakes

ATTB－25，ATTB－55，ATTB－115

Part Numbers

Item		ATTB－25		ATTB－55		ATTB－115		Item	Description	ATTB－25		ATTB－55		ATTB－115	
No．	Description	Qty．	Part No．	Qty．	Part No．		Part No．			Qty．	Part No．		Part No．		Part No．
1	Armature Hub	1	540－0908	1	540－0851	1	540－0864		7／8＂Bore	－	5191－541－005	－	5192－541－003	－	－
2－1	Armature	1	110－0220	1	110－0218	1	110－0223		1＂Bore	－	－	－	5192－541－004	－	－
2－2	Facing Assem．	1	5191－445－003	1	5192－445－003	1	5193－445－003		1－1／8＂Bore	－	－	－	5192－541－005	－	5193－541－002
2－3	Screw	6	797－1389	8	797－1389	8	797－1389		1－1／4＂Bore	－	－	－	－	－	5193－541－003
2－4	Screw	4	797－1020	6	797－1387	6	797－1174		1－3／8＂Bore	－	－	－		－	5193－541－004
2－5	Lockwasher	－	－	6	950－0355	6	950－0355		1－1／2＂Bore	－	－	－	－	－	5193－541－005
2－6	Flatwasher	－	－	2	950－0023	2	950－0023	5	Mtg． $\mathrm{Acc}^{\prime} y$ ．	1	5191－101－007	1	5192－101－007	1	5192－101－007
3	Magnet Assem．	1	－	1	－	1	－								
	24 Volts D．C．	－	5191－631－007	－	5192－631－007	－	5193－631－014	Optio	al Accessory It	ems					
	90 Volts D．C．	－	5191－631－008	－	5192－631－008	－	5193－631－015	6	Conduit Box	1	5162－101－002	1	5162－101－002	1	5162－101－002
4	Splined Hub	1	－	1	－	1	－	Kit Ite							
	1／2＂Bore	－	5191－541－002	－	－	－	－	7	Friction Face						
	5／8＂Bore	－	5191－541－003	－	－		－		Replacement Ki	it 1	5161－101－008		5162－101－008	1	5163－101－008
	3／4＂Bore	－	5191－541－004	－	5192－541－002	－	－		（includes item	s 2－1，	2－2，2－3，2－4， 2	－5，	2－6）		

Clutch Assemblies

Unit Size	Voltage	Part No.
ATTC-25-1/2	24	$5161-271-021$
ATTC-25-1/2	90	$5161-271-025$
ATTC-25-5/8	24	$5161-271-022$
ATTC-25-5/8	90	$5161-271-026$
ATTC-25-3/4	24	$5161-271-023$
ATTC-25-3/4	90	$5161-271-027$
ATTC-25-7/8	24	$5161-271-024$
ATTC-25-7/8	90	$5161-271-028$
ATTC-55-3/4	24	$5162-271-021$
ATTC-55-3/4	90	$5162-271-025$
ATTC-55-7/8	24	$5162-271-022$
ATTC-55-7/8	90	$5162-271-026$
ATTC-55-1	24	$5162-271-023$
ATTC-55-1	90	$5162-271-027$
ATTC-55-1-1/8	24	$5162-271-024$
ATTC-55-1-1/8	90	$6162-271-028$
ATTC-115-1-1/8	24	$5163-271-021$
ATTC-115-1-1/8	90	$5163-271-025$
ATTC-115-1-1/4	24	$5163-271-022$
ATTC-115-1-1/4	90	$5163-271-026$
ATTC-115-1-3/8	24	$5163-271-023$
ATTC-115-1-3/8	90	$5163-271-027$
ATTC-115-1-1/2	24	$5163-271-024$
ATTC-115-1-1/2	90	$5163-271-028$

Part Numbers

Item		ATTC-25		ATTC-55		ATTC-115	Item No.	Description	ATTC-25		ATTC-55		ATTC-115	
No.	Description	Qty.	Part No.	Qty.	Part No.	Qty. Part No.			Qty. P	Part No.		. Part No.		Part No.
1	Retaining Ring	,	748-0734	1	748-0725	1 748-0738	*+10-1			5191-445-003		5192-445-003		5193-445-003
2	Armature Hub	1	540-0907	1	540-0852	$1540-0863$	${ }^{*}+10-2$			797-1389		797-1389		797-1389
3	Retaining Ring	1	748-0732	1	748-0726	$1748-0737$	*11	Bearing		166-0283		166-0284		166-0279
4	Retaining Ring	1	748-0731	1	748-0728	$1748-0736$	12	Field Assembly		166-0283		166.0284		
5	Bearing	2	166-0278	2	166-0277	2 166-0279		90 Volts D.C.		5161-451-003		5162-451-003		5163-451-003
6	Spacer	1	807-0119	1	807-1061	1 807-1063		24 Volts D.C.		5161-451-004		5162-451-004		5163-451-004
7	Splined Hub	1	-	1	-	1	*13	Retaining Ring	17	748-0018		748-0727		748-0737
	1/2" Bore		540-0910	-	-	- -	14	Adapter	-	-		-		104-0300
	5/8" Bore		540-0911	-	-	- -	15	Screw	-	_		- -		797-1396
	3/4" Bore		540-0912		540-1501	- -	16	Lockwasher	-	-		-		950-0102
	7/8" Bore		540-0913		540-1502	- -		,						
	1" Bore	-	-		540-1503	- -	Option	nal Accessory lte						
	1-1/8" Bore	-	-		540-1504	540-0857	17	Conduit Box	15	5162-101-002		5162-101-002	1	5162-101-002
	1-1/4" Bore	-	-	-	-	540-0858	19	Restraining Arm						
	1-3/8" Bore	-	-	-	-	540-0859		Assembly		5162-101-004	1	5162-101-004	1	5162-101-004
	1-1/2" Bore	-	-	-	-	540-0860	20	Timing Belt and	Belt Pu	Pulleys: Consult	Fact	ctory.		
8	Setscrew	2	797-1393	2	797-1386	2 797-1395	Kit lte							
*+9-1	Armature	1	110-0220	1	110-0218	1 110-0223		Clutch Rebuild K	15	5161-101-012	1	5162-101-012	1	5163-101-012
*+9-2	Screw	4	797-1519	6	797-1462	6 797-1463		(includes items	9-1, 9-2	-2, 9-3, 9-4, 10	0, 1	1,13)		
*'9-3	Lockwasher	-	-	6	950-0355	6 950-0355		Friction Service	kit 15	5161-101-008		5162-101-008	1	5163-101-008
*9-4	Flatwasher	-	-	2	950-0023	2 950-0023	Note:	In some version	of this	is product, item		0 consists of a roto		a replaceable
*10	Rotor	1	5161-751-002	21	5162-751-002	1 5163-751-002		face.						

One of the keys to the Warner Electric tensioning system is the Electro Disc tension brake. Electro Disc brake systems are capable of continuous slip from full roll to core diameter while providing outstandingly consistent and accurate control of unwind tension throughout the process. Electro Disc brakes operate smoothly and quietly. They respond instantly for emergency stops. Wear life is remarkable. Electronic control systems are easily interfaced with Warner Electric controls. Selection of the right brake for virtually any web processing application, from film to boxboard, is made possible through a building-block modular design.

Simple Maintenance

Rugged design eliminates most moving parts. No diaphragms to break down. Asbestos-free brake pads are quickly and easily replaced. Brake wear does not affect torque as with some other types of brakes.

Easy Installation

Electro Disc tension brakes fit within tight space restrictions. Bushings adapt to most standard and metric shafts. Electrical installation replaces complex pneumatic plumbing, valves and compressors.

Long Life, High Heat Dissipation

A replaceable face armature disc provides extremely long life and maximum heat dissipation. Standard armature discs can be mounted singly or in tandem as shown here to increase the heat dissipation and torque capability.

Accurate, Consistent Control

The responsiveness of electric brakes coupled with specially designed controls provides accurate tensioning from beginning to end of roll, even during emergency stops and flying splices.

Brake Modularity

With one to sixteen magnets and single or double armature discs, Electro Disc tension brakes offer torque control and continuous slip capacity to meet a broad spectrum of requirements for virtually any web processing application.

Four armature sizes

Patented Design

The patented Electro Disc design is a proven concept, featuring a simple, yet powerful tension brake ... easy-to-control, smooth, quiet and accurate. The speed of response and controllability, especially near zero tension, far exceeds that of other braking technologies.

Simple. Powerful. Controllable.

The electromagnetic principle, as applied to the Electro Disc tension brake, results in a brake design that features outstanding control from zero torque to the maximum limits of the brake. Complex moving parts are eliminated.

Smooth Operation with Minimal Maintenance

The friction pads are made of a unique composite of asbestos-free friction materials specially designed to produce smooth, powerful, yet quiet engagement between the magnet and armature discs. Since the replaceable friction pads and armature disc are the only parts which receive regular wear, the electromagnets can be reused indefinitely. An indicator notch on the friction pad, as well as an optional electric wear indicator, makes routine checking for remaining wear life quick and easy.

MTB-II ... the second generation

MTB-II...The Second Generation

The ED magnet has been redesigned following years of engineering tests and evaluation. The result is a unique, patent pending design providing more than double the life of the previous Electro Disc brakes ... without any loss in smoothness or controllability.

New armature design

New aluminum armature carriers for 10 ", 13 " and $15^{\prime \prime}$ systems provide inertial reduction up to 40%, allowing improved tension control as high speed machines accelerate to core. The radial blower design improves air flow and cooling. Systems run cooler and last longer.

New friction system

The friction system features three important benefits:

- A new, long wearing friction pad material.
- A new, improved balance between the wear rate of the magnetic poles and the friction material.
- A replaceable face friction pad for fast, easy maintenance.

New pole geometry

The geometry of the magnetic poles has been redesigned (Patent Pending) to minimize the "leading edge wear" common to all pin mounted friction brakes. Magnet mounting holes do not extend through the face for freer, axial movement.

New electronic wear indicator option

An optional, electronic wear indicator is imbedded into the magnets to aid in planning maintenance requirements. An indicator on the Warner Electric control illuminates at the point where 15% of brake life still remains.

Electric Brakes

MTB Series - Modular Tension Brakes

Emergency Stop Torque Curves
Note: The following curves are for emergency stop torques. For normal running dynamic torque, multiply the emergency stop torque value by .54 .

Model number designation

Single Disc， 2 Magnets
Dia．of
Armature
Designates
（1）Disc
Number of Magnets

Dual Discs， 4 Magnets

Dual Discs， 12 Magnets
Dia．of Armature
Designates
（2）Discs
Number
of Magnets

Specifications

Model	No．of Discs	No．of Magnets	Resistance ＠20 ${ }^{\circ} \mathrm{C}$ Ohms ${ }^{1}$	Current Amps	Watts ${ }^{1}$	Max．Allowable Disc Speed RPM
10－0－1	1	1	69.10	0.35	8.33	3600
10－0－2	1	2	34.55	0.69	16.67	3600
10－0－3	1	3	23.03	1.04	25.01	3600
10－10－2	2	2	34.55	0.69	16.67	3600
10－10－4	2	4	17.28	1.39	33.33	3600
10－10－6	2	6	11.52	2.08	50.0	3600
13－0－1	1	1	69.10	0.35	8.33	2500
13－0－2	1	2	34.55	0.69	16.67	2500
13－0－3	1	3	23.03	1.04	25.01	2500
13－0－4	1	4	17.28	1.39	33.33	2500
13－0－5	1	5	13.82	1.74	41.68	2500
13－13－2	2	2	34.55	0.69	16.67	2500
13－13－4	2	4	17.28	1.39	33.33	2500
13－13－6	2	6	11.52	2.08	50.0	2500
13－13－8	2	8	8.64	2.78	66.67	2500
13－13－10	2	10	6.91	3.47	83.36	2500
15－0－1	1	1	69.10	0.35	8.33	2500
15－0－2	1	2	34.55	0.69	16.67	2500
15－0－3	1	3	23.03	1.04	25.01	2500
15－0－4	1	4	17.28	1.39	33.33	2500
15－0－5	1	5	13.82	1.74	41.68	2500
15－0－6	1	6	11.52	2.08	50.0	2500
15－15－2	2	2	34.55	0.69	16.67	2500
15－15－4	2	4	17.28	1.39	33.33	2500
15－15－6	2	6	11.52	2.08	50.0	2500
15－15－8	2	8	8.64	2.78	66.67	2500
15－15－10	2	10	6.91	3.47	83.36	2500
15－15－12	2	12	5.76	4.17	100.0	2500
20－0－1	1	1	69.10	0.35	8.33	1600
20－0－2	1	2	34.55	0.69	16.67	1600
20－0－3	1	3	23.03	1.04	25.01	1600
20－0－4	1	4	17.28	1.39	33.33	1600
20－0－5	1	5	13.82	1.74	41.68	1600
20－0－6	1	6	11.52	2.08	50.0	1600
20－0－7	1	7	9.87	2.43	58.36	1600
20－0－8	1	8	8.64	2.78	66.67	1600
20－20－2	2	2	34.55	0.69	16.67	1600
20－20－4	2	4	17.28	1.39	33.3	1600
20－20－6	2	6	11.52	2.08	50.0	1600
20－20－8	2	8	8.64	2.78	66.67	1600
20－20－10	2	10	6.91	3.47	83.36	1600
20－20－12	2	12	5.76	4.17	100.0	1600
20－20－14	2	14	4.94	4.86	116.60	1600
20－20－16	2	16	4.32	5.56	133.33	1600

Notes：1．Electrical data based on magnets connected in parallel．

Armature Data

Brake Size	No．of Armatures	Total Brake Inertia（lb．ft．${ }^{2}$ ）	Armature and Hub＊ Total Weight（Ibs．）
$10^{\prime \prime}$	1	0.9	9.4
	2	1.4	14.6
$13^{\prime \prime}$	1	2.9	16.6
	2	4.6	25.0
$15^{\prime \prime}$	1	4.6	22.3
	2	7.5	32.5
$20 "$	1	20.0	70.0
	2	36.0	105.0

＊Armature，hub and bushing rotate

Torque Ratings per Magnet

Brake	Dynamic Torque＊ Size	Drag （lb．ft．）	（lb．ft．） （lorque
$10^{\prime \prime}$	28.5	.21	62
$13^{\prime \prime}$	30	.32	64
$15^{\prime \prime}$	33	.37	65
$20^{\prime \prime}$	37	.51	70

＊Per magnet＠ 50 rpm； 270 ma coil current
＊＊Per magnet＠ 50 rpm； 500 ma coil current

Modular Design ... tailored to meet your requirements

To select the proper size Electro Disc tension brake, it is important to understand that the brakes are fully modular. This feature enables matching requirements for heat dissipation and emergency stopping torque to the tension brake configuration that optimizes these features.

Selection

The easy-to-use selection charts on page 89 specifies a particular modular combination as listed in the accompanying chart. (See page 90 for selection of basic tension brakes.)
Determining two factors are all that's required.

1. Diameter

Basically heat dissipation capacity is directly proportional to the diameter of the disc.
2. Number of magnets

Torque capacity is proportional to the number of magnets. See page 89 for torque and heat dissipation sizing to meet the specific requirements of your application.

Mounting Configurations

Flexible Mounting

Thrust bearings, side loading, and special supports are a thing of the past!

Universal Mounting Bracket

With addition of a simple "L" shaped bracket (Customer supplied), the universal mount provides a perfectly easy retrofit on older machines.

Bulk Head Mounting Bracket

Use of the bulkhead mount reduces the overall diameter to allow mounting in more constricted or enclosed locations.

Direct (Free) Mounting

For the Machine Builder or retrofitter, the free mount provides the simplest, least expensive option with low profile and diameter advantages. Mounting directly to the side frame of the machine offers all support necessary for performance requirements.

MTB-II Dimensions

... with Universal Mounting Brackets

inches (mm)

Armature Size	A	B Max.	C BORE			D Max.	E Max.	F Max.	G Degree
			Stock*	Bushing	Browning				
10"	$\begin{aligned} & 8.625 \pm .020 \\ & (219.0 \pm 0.5) \end{aligned}$	$\begin{gathered} 9.500 \\ (241.3) \end{gathered}$	$\begin{gathered} 1.750 \\ (44.45) \end{gathered}$	$\begin{aligned} & .500-1.750 \\ & (14.0-42.0) \end{aligned}$	P-1	$\begin{aligned} & 10.020 \\ & (254.5) \end{aligned}$	$\begin{gathered} .479 \\ (12.2) \end{gathered}$	$\begin{aligned} & 3.550 \\ & (88.9) \end{aligned}$	180
13"	$\begin{aligned} & 10.187 \pm .020 \\ & (258.7 \pm 0.5) \end{aligned}$	$\begin{aligned} & 11.000 \\ & (279.4) \end{aligned}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 13.520 \\ & (343.4) \end{aligned}$	$\begin{aligned} & 1.219 \\ & (31.0) \end{aligned}$	$\begin{gathered} 5.687 \\ (144.4) \end{gathered}$	$\begin{gathered} 108 \& \\ 144 \end{gathered}$
15"	$\begin{aligned} & 11.125 \pm .020 \\ & (282.6 \pm 0.5) \end{aligned}$	$\begin{aligned} & 12.000 \\ & (304.8) \end{aligned}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 15.325 \\ & (389.3) \end{aligned}$	$\begin{gathered} 1.219 \\ (31.0) \end{gathered}$	$\begin{gathered} 6.875 \\ (174.6) \end{gathered}$	120
$20^{\prime \prime}$	$\begin{aligned} & 13.470 \pm .020 \\ & (340.4 \pm 0.5) \end{aligned}$	$\begin{aligned} & 14.250 \\ & (362.0) \end{aligned}$	-	$\begin{gathered} 2.375-5.500 \\ - \end{gathered}$	U-0	$\begin{aligned} & 20.020 \\ & (508.5) \end{aligned}$	$\begin{aligned} & 2.720 \\ & (69.1) \end{aligned}$	$\begin{gathered} 4.380 \\ (111.3) \end{gathered}$	-

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 96.
** Width dimension is the same for single or dual magnet carriers. (Dual magnet carrier shown.)
Consult factory for dimensional information on MTB-I.
Note: All dimensions are nominal unless otherwise noted.

MTB-II Dimensions

... with Bulk Head Mounting Brackets

inches (mm)

Armature Size	A	B Max.	C BORE			D Max.	E Max.	F Max.	G Degree
			Stock*	Bushing	Browning				
$10^{\prime \prime}$	$\begin{aligned} & 5.260 \pm .020 \\ & (133.6 \pm 0.5) \end{aligned}$	$\begin{gathered} \hline 7.750 \\ (196.9) \end{gathered}$	$\begin{gathered} 1.750 \\ (44.45) \end{gathered}$	$\begin{aligned} & .500-1.750 \\ & (14.0-42.0) \end{aligned}$	P-1	$\begin{aligned} & 10.020 \\ & (254.5) \end{aligned}$	$\begin{gathered} .479 \\ (12.2) \end{gathered}$	$\begin{gathered} 3.55 \\ (88.9) \end{gathered}$	180
13"	$\begin{aligned} & 6.822 \pm .020 \\ & (173.3 \pm 0.5) \end{aligned}$	$\begin{gathered} 9.300 \\ (236.2) \end{gathered}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 13.520 \\ & (343.4) \end{aligned}$	$\begin{aligned} & 1.219 \\ & (31.0) \end{aligned}$	$\begin{gathered} 5.687 \\ (144.4) \end{gathered}$	$\begin{gathered} 108 \& \\ 144 \end{gathered}$
15"	$\begin{aligned} & 7.760 \pm .020 \\ & (197.1 \pm 0.5) \end{aligned}$	$\begin{aligned} & 10.230 \\ & (259.9) \end{aligned}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 15.325 \\ & (389.3) \end{aligned}$	$\begin{aligned} & 1.219 \\ & (31.0) \end{aligned}$	$\begin{gathered} 6.875 \\ (174.6) \end{gathered}$	120
$20 "$	$\begin{gathered} 10.250 \pm .020 \\ (260.4 \pm 0.5) \end{gathered}$	$\begin{aligned} & 12.500 \\ & (317.5) \end{aligned}$	—	$2.375-5.500$	U-0	$\begin{aligned} & 20.020 \\ & (508.5) \end{aligned}$	$\begin{aligned} & 2.720 \\ & (69.1) \end{aligned}$	$\begin{gathered} 4.380 \\ (111.3) \end{gathered}$	-

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 96.
** Width dimension is the same for single or dual magnet carriers. (Dual magnet carrier shown.)
Consult factory for dimensional information on MTB-I.
Note: All dimensions are nominal unless otherwise noted.

MTB-II Dimensions

... with Direct Mounting

Dual Armature

Male Pins

Female Pins

inches (mm)

Armature Size	A	C BORE			D Max.	E Max.	F Max.	G Degree
		Stock*	Bushing	Browning				
10"	$\begin{gathered} 3.350 \pm .020 \\ (85.1 \pm 0.5) \end{gathered}$	$\begin{gathered} 1.750 \\ (44.45) \end{gathered}$	$\begin{aligned} & .500-1.750 \\ & (14.0-42.0) \end{aligned}$	P-1	$\begin{aligned} & 10.020 \\ & (254.5) \end{aligned}$	$\begin{gathered} .479 \\ (12.2) \end{gathered}$	$\begin{aligned} & 3.550 \\ & (88.9) \end{aligned}$	120
13"	$\begin{aligned} & 5.215 \pm .020 \\ & (132.5 \pm 0.5) \end{aligned}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 13.520 \\ & (343.4) \end{aligned}$	$\begin{aligned} & 1.219 \\ & (31.0) \end{aligned}$	$\begin{gathered} 5.687 \\ (144.4) \end{gathered}$	72
15"	$\begin{aligned} & 5.850 \pm .020 \\ & (148.6 \pm 0.5) \end{aligned}$	$\begin{gathered} 3.375 \\ (85.73) \end{gathered}$	$\begin{aligned} & 1.125-3.750 \\ & (28.0-95.0) \end{aligned}$	R-1	$\begin{aligned} & 15.325 \\ & (389.3) \end{aligned}$	$\begin{aligned} & 1.219 \\ & (31.0) \end{aligned}$	$\begin{gathered} 6.875 \\ (174.6) \end{gathered}$	60
$20^{\prime \prime}$	$\begin{aligned} & 8.125 \pm .040 \\ & (206.4 \pm 1.0) \end{aligned}$	-	$2.375-5.500$	U-0	$\begin{aligned} & 20.020 \\ & (508.5) \end{aligned}$	$\begin{aligned} & 2.720 \\ & (69.1) \end{aligned}$	-	-

* Stock bore is straight bore for use with Trantorque bushing.

For replacement parts list and exploded view drawing, see page 96.
Consult factory for dimensional information on MTB-I.
Note: All dimensions are nominal unless otherwise noted.

Retrofit/Upgrade of MTB to MTB-II

New MTB-II magnets and armature carriers are designed to
MTB Magnet Weight easily retrofit and upgrade existing MTB applications.

3 lb .4 .5 oz . each Magnet

1. Magnets only - Existing applications can extend the life of the friction system by installing MTB-II components.
If presently using... MTB MAGNETS Upgrade with... MTB-II MAGNETS

Note: a) The same number of magnets should be used unless additional considerations exist (consult factory).
b) MTB-II Free Mount Pins (5216-101-029) may replace the pins in the MTB carriers to convert them into MTB-II carriers.
2. Aluminum Armature Carriers - Existing applications may be upgraded to aluminum armature carriers with the benefit of reducing armature inertia. This may be done with or without upgrading the magnets.

If presently using... MTB ARMATURE \& HUB Upgrade with... MTB-II ARMATURE \& CARRIER

Note: Due to the orientation of the tapered bore in the integral hub of the MTB-II armature carrier, some existing MTB applications may not readily retrofit to the new assembly (consult factory).

MTB Series - Modular Tension Brakes

Item Description	10" Armature	13" Armature	15" Armature	20" Armature*
Armatures				
1 Armature Carrier (Bushing Enters from Flush Side of Carrier as Shown)	295-0021	295-0023	295-0019	-
Armature Carrier Reverse Taper (Bushing Enters from Extended Side of Carrier)	295-0031	295-0030	295-0029	-
Armature Carrier (Straight Bore)	295-0026	295-0027	295-0028	
2 Armature (Replaceable Face)	5216-101-025	5216-101-026	5216-101-024	-
2a Armature Mounting Accessory (Included with Armature)	5216-101-023	5216-101-023	5216-101-023	-
3 Bushing (Customer Supplied) Taper Bore	Browning P1	Browning R1	Browning R1	-
Straight Bore	Use Trantorque. Consult Warner Electric			-
4 Female Pin Kit (Includes 2 Pins)	5216-101-030	5216-101-030	5216-101-030	5216-101-030
4a Male Pin Kit (Includes 2 Pins with Nuts and Lockwashers)	5216-101-029	5216-101-029	5216-101-029	5216-101-029
Magnet Carriers				
5 Single Magnet Carrier Assembly	5216-295-004	5216-295-004	5216-295-004	5216-295-004
6 Dual Magnet Carrier Assembly	5216-295-005	5216-295-006	5216-295-007	5216-295-007
Carrier Brackets				
7 Universal Mounting Bracket, Series 10-0, 13-0, \& 20-0 (2)	5216-101-020	5216-101-020	5216-101-020	5216-101-020
Universal Mounting Bracket, Series 10-10, 13-13, \& 20-20 (2)	5216-101-021	5216-101-021	5216-101-021	5216-101-021
8 Bulk Head Mounting Bracket (3)	5216-101-022	5216-101-022	5216-101-022	5216-101-022
Magnets				
9 Magnet Assembly, Standard	5216-631-010	5216-631-010	5216-631-010	5216-631-010
Magnetic Assembly, HICO	5216-631-013	5216-631-013	5216-631-013	5216-631-013
9a Friction Pad, Standard (Replacement Part Only)	5216-101-028	5216-101-028	5216-101-028	5216-101-028
Friction Pad, HICO (4)	5216-101-031	5216-101-031	5216-101-031	5216-101-031
9b Preload Spring (1) (Included with Magnets)	808-0008	808-0008	808-0008	808-0008
10 Magnet Assembly with Wear Indicator	5216-631-009	5216-631-009	5216-631-009	5216-631-009
10a Friction Pad with Wear Indicator (Replacement Part Only)	5216-101-027	5216-101-027	5216-101-027	5216-101-027

[^5]* 20 " armature components - see page 97.

Browning is a registered trademark of Emerson Electric Co. Trantorque is a registered trademark of Trantorque Corporation.

Part Numbers

Item	Description	10" Armature	15" Armature	20" Armature
1	Magnet Assembly	5216-631-004	5216-631-004	5216-6310-004
1 a	Friction Pad (Replacement Part Only)	5216-101-003	5216-101-003	5216-101-003
1b	Preload Spring1	808-0008	808-0008	808-0008
2	Armature (Replaceable Face \& Carrier)	5216-111-001	5216-111-003	5216-111-004
2a	Steel Replacement Face	5216-101-012	5216-101-011	5216-101-013
3	Dual Magnet Carrier Assembly	5216-295-002	5216-295-001	5216-295-001
3 a	Male Pin Only (Includes Nut \& Lockwasher)	5216-101-010	5216-101-010	5216-101-010
3b	Female Pin Kit	5216-101-008	5216-101-008	5216-101-008
4	Single Magnet Carrier Assembly	5216-295-003	5216-295-003	5216-295-003
5	Series 10-0, 15-0, \& 20-0 Universal Mounting Bracket (2)	5216-101-020	5216-101-020	5216-101-020
	Series 10-10, 15-15, \& 20-20 Universal Mounting Bracket (2)	5216-101-021	5216-101-021	5216-101-021
6	Bulk Head Mounting Bracket (3)	5216-101-022	5216-101-022	5216-101-022
7	Hub	540-0842	540-1382	540-1399
8	Series 10-0, 15-0, \& 20-0 Armature Mounting Accessory	5216-101-004	5216-101-004	5216-101-018
	Series 10-10, 15-15, \& 20-20 Armature Mounting Accessory	5216-101-005	5216-101-005	5216-101-019
9	Bushing (Customer Supplies)	Browning Type P-1	Browning Type R-1	Browning Type U-O

[^6]Fast, precise torque adjustment!

Precision Tork ${ }^{\text {TM }}$ clutches and brakes

Bolt circles on both ends for versatile mounting.

Torque is constant with respect to speed

- Torque is extremely consistent and smooth at low, as well as high, speeds.
- By using the Precision Tork unit, you can solve almost any torque control problem.

No external control or power source

- Simple to install
- Nothing to monitor
- Unaffected by power interruption or power fluctuation
- Safe to use

Dependable performance

- Smallest possible transition from static to dynamic torque. Virtually eliminates the "stick-slip" phenomenon associated with friction devices.
- Long life. The only wearing parts are the ball bearings.
- Extremely accurate. Precision Tork units out-perform all other devices at low RPM.

Versatile mounting: Easy to retrofit

- Clutches are available with hollow bores for mounting on motor shafts or jack shafts.
- Bolt circles allow for fixed mounting, adding a pulley, or stub shaft adapter.
- Brakes are available with solid shaft outputs.

Distributor item

- Off the shelf availability.
- Interchangeable with competitors' products.

Magnetic Brakes and Clutches

M Series - Permanent Magnet

Unwind tension control

Brake mounted on shaft of unwind spool or bobbin.

Information required:

Full roll diameter (in.) = 6 in.
Core diameter (in.) = 4 in.
Average tension (lbs.) = 4 lbs .
Velocity (feet per min.) = 100 fpm

How to size:

Average radius (in.) =

$$
\begin{aligned}
& \frac{\text { Full roll dia. (in.) }+ \text { Core dia. (in) }}{4} \\
& =\frac{6+4}{4}=2.5 \mathrm{in} .
\end{aligned}
$$

Torque (lb.in.) =
Avg. tension (lbs.) x Avg. radius (in.)

Check tension range:
Max. tension $=$ Torque (lb.in.) \times
$\frac{2}{\text { Core dia. (in.) }}=10 \times \frac{2}{4}=5 \mathrm{lbs}$.
Min. tension $=$ Torque (lb.in.) \times
$\frac{2}{\text { Full roll dia. (in.) }}=10 \times \frac{2}{6}=3.3 \mathrm{lbs}$.
Slip watts =
$\frac{\text { Max. tension (lbs.) } \times \text { velocity (fpm) }}{44.2}$
$=11.3$ watts

Select Model MC4

$=4 \times 2.5=10 \mathrm{lb} . \mathrm{in}$.
 Cycling Information required:

Slip RPM $=500$ RPM
Torque $=8 \mathrm{lb}$.in.
$\%$ slip time of total cycle time $=25 \%$

How to size:

*Watts $=.0118 \times$ torque (lb.in.) \times slip
RPM \times \% slip time $=.0118 \times 8 \times$
$500 \times .25=11.8$ watts

Select an MC4 from the specification chart.
*Note: Consult factory if peak slip watts are extremely high or if duration of slip period is in excess of 1 minute.

Nip roll or pulley tension control

Film tensioning
Constant tensioning supplied by hysteresis unit.

Information required:

Pulley or nip roll diameter $=4 \mathrm{in}$. Tension $=6 \mathrm{lbs} . \quad$ Velocity $=100 \mathrm{fpm}$
How to size:
Torque (lb.in.) $=$ Tension (lbs.) $\times \frac{\text { Dia. (in.) }}{2}=6 \times \frac{4}{2}=12 \mathrm{lb} . \mathrm{in}$.
Slip watts $=\frac{\text { Tension (lbs.) } \times \text { velocity }(\mathrm{fpm})}{44.2}=\frac{6 \times 100}{44.2}=13.5 \mathrm{watts}$

Select Model MC5

Overload protection/Torque limiting/Soft start
Motor horsepower method

Torque limiting

Hysteresis clutch provides overload protection.

Hysteresis clutch can provide overload protection and soft start.

Information required:

Motor HP = 1/2 HP
Motor RPM $=1750$ RPM

How to size:

$$
\begin{aligned}
\text { Torque (lb.in.) } & =\frac{H P \times 63000}{\mathrm{RPM}}= \\
\frac{1 / 2 \times 63000}{1750} & =18 \mathrm{lb} . \mathrm{in} .
\end{aligned}
$$

Select an MC5 from the specification chart.

M Series - Permanent Magnet

Specifications	Model Size	Torque	Heat Dissipation (watts)	$\begin{gathered} \text { Inertia } \\ \left(\text { oz.in. } / \text { sec. }^{2}\right. \text {) } \end{gathered}$	Bending Moment (lb.in.)	Max. RPM	Weight (lbs.)	Bore Range/Shaft Dia. (in.)
Clutches	MC1. 5	1-10 oz.in.	10	0.7×10^{-3}	5	3600	1102.	1/4
	MC2	1-22 oz.in.	10	0.7×10^{-3}	5	3600	1102.	1/4
	MC3	0.3-6.0 lb.in.	- 18	6.5×10^{-3}	10	1800	2	3/8
	MC4	0.5-11 lb.in.	. 22	13.3×10^{-3}	10	1800	2.5	3/8, 1/2, 5/8
	MC5	1-30 lb.in.	72	77×10^{-3}	25	1800	9	$3 / 8,1 / 2,5 / 8,3 / 4,7 / 8,1$
	MC5. 5	1-50 lb.in.	110	120×10^{-3}	25	1800	11	5/8, 3/4, 7/8, 1
	MC6	2-70 lb.in.	150	196×10^{-3}	25	1800	12	5/8, 3/4, 7/8, 1
	MC9	15-300 lb.in.	. 345	600×10^{-3}	50	1200	45	5/8, 3/4, 7/8, 1, 1-1/8, 1-1/4
Brakes	MB1	0-1.1 oz.in.	3	3.5×10^{-5}	1	3600	202.	3/16
	MB1. 5	1-10 oz.in.	10	0.9×10^{-3}	5	3600	1102.	1/4
	MB2	1-22 oz.in.	10	0.9×10^{-3}	5	3600	1102.	1/4
	MB3	0.3-6.0 lb.in.	- 18	6.9×10^{-3}	10	1800	2	3/8
	MB4	0.5-11 lb.in.	. 22	13.7×10^{-3}	10	1800	2.5	5/8
	MB5	1-30 lb.in.	72	82×10^{-3}	25	1800	9	1
	MB5. 5	1-50 lb.in.	110	125×10^{-3}	25	1800	11	1
	MB6	2-70 lb.in.	150	201×10^{-3}	25	1800	12	1
	MB9	15-300 lb.in.	345	600×10^{-3}	50	1200	45	1

Typical Mounting Arrangements

Brake:
Typical setup for tensioning wire, film and fibers.

Clutch:

Typical setup for material handling, soft starts and torque limiting.

Clutch Coupling:

Typical setup for torque limiting protection used for labeling, capping and printing applications.

Magnetic Brakes and Clutches
M Series - Permanent Magnet

Heat Dissipation Charts

Clutches/Brakes

MC1.5/MB1.5

MC9/MB9

Note: Torque output at a given setting will vary up to 3% from unit to unit. Matched units are available upon request.

Torque Setting Charts

MC3/MB3

MC5.5/MB5.5

Unit Torque Settings

MC5/MB5

MC6/MB6

MC4/MB4

MC9/MB9

Note: Torque output at a given setting will vary up to 3% from unit to unit. Matched units are available upon request.

MC - Magnetic Clutches

Drawing A

Drawing B

Model	Drawing	A	B	C	D	E	F
MC1.5*	A	1.85	1.61	1.35	0.375	0.26	-
MC2* *	A	1.85	1.61	1.35	0.375	0.26	-
MC3 *	A	2.75	2.24	2.00	0.590	0.24	-
MC4*	A	3.23	2.26	2.00	0.984	0.26	-
MC5*	A	4.65	3.18	2.65	1.378	0.42	-
MC5.5*	A	5.29	3.25	2.65	1.378	0.60	-
MC6**	B	6.10	3.18	2.04	1.378	0.73	0.18
MC9**	B	9.4	4.17	3.49	1.77	0.55	0.13

* Set screw adjustment
** Spanner wrench required for adjustment. Spanner wrench P/N YZ00-0007

Bore \& Keyseat Sizes

Model	Keyseat	Lockdown Method	$\stackrel{\mathbf{G}}{\text { (Bore) }}$	$\xrightarrow[\text { (Pilot-Both Ends) }]{\mathrm{H}}$	$\stackrel{I}{\text { (Both Ends) }}$
MC1. 5	None	3/32 Roll Pin	1/4	0.875/0.874 x 0.08 dp	3) $6-32 \times 5 / 16 \mathrm{dp} 1.25$ B.C.
MC2	None	3/32 Roll Pin	1/4	0.875/0.874 $\times 0.08 \mathrm{dp}$	3) $6-32 \times 5 / 16 \mathrm{dp} 1.25$ B.C.
MC3	None	2) Set Screws	3/8	1.383/1.381 x . 120 dp	3) $10-32 \times 7 / 16 \mathrm{dp} 1.875$ B.C.
MC4		3/32 Roll Pin 2) Set Screws 2) Set Screws	$\begin{aligned} & 3 / 8 \\ & 1 / 2 \\ & 5 / 8 \end{aligned}$	$1.850 \times 1.849 \times 0.08 \mathrm{dp}$	3) $10-32 \times 7 / 16 \mathrm{dp} 2.375$ B.C.
MC5	None 1/8 Key 3/16 Key 3/16 Key 3/16 Key 1/4 Shallow	2) Set Screws 2) Set Screws	$\begin{gathered} 3 / 8 \\ 1 / 2 \\ 5 / 8 \\ 3 / 4 \\ 7 / 8 \\ 1 \end{gathered}$	2.441/2.440x. 100 dp	3) $10-32 \times 1 / 2 \mathrm{dp} 3.00$ B.C.
MC5.5	$\begin{aligned} & \text { 3/16 Key } \\ & \text { 3/16 Key } \\ & \text { 3/16 Key } \\ & \text { 1/4 Shallow } \end{aligned}$	2) Set Screws 2) Set Screws 2) Set Screws 2) Set Screws	$\begin{gathered} 5 / 8 \\ 3 / 4 \\ 7 / 8 \\ 1 \end{gathered}$	2.441/2.440x. 100 dp	3) $10-32 \times 1 / 2 \mathrm{dp} 3.00$ B.C.
MC6	$\begin{gathered} \text { 3/16 Key } \\ \text { 3/16 Key } \\ \text { 3/16 Key } \\ \text { 1/4 Shallow } \end{gathered}$	2) Set Screws 2) Set Screws 2) Set Screws 2) Set Screws	$\begin{gathered} 5 / 8 \\ 3 / 4 \\ 7 / 8 \\ 1 \end{gathered}$	2.441/2.440	3) $1 / 4-20 \times 5 / 16 \mathrm{dp} 2.875$ B.C.
MC9	3/16 Key 3/16 Key 3/16 Key 1/4 Key 1/4 Key 1/4 Key	2) Set Screws 2) Set Screws	$\begin{gathered} 5 / 8 \\ 3 / 4 \\ 7 / 8 \\ 1 \\ 1-1 / 8 \\ 1-1 / 4 \end{gathered}$	3.250/3.248	4) $5 / 16-18 \times 1 / 2 \mathrm{dp} 5.875$ B.C.

MEX (55) $53632331 \quad M T Y(81) 83541018$ QRO (442) 1957260 ventas@industrialmagza.com
Magnetic Brakes and Clutches
M Series - Permanent Magnet

MB - Magnetic Brakes

Optional Mounting brackets, see page 127

Model	Drawing	A	B	C	$\begin{gathered} \text { D } \\ \text { (Shaft) } \end{gathered}$	E	F	G	(Pilot-Both Ends)	$\begin{gathered} \text { I } \\ \text { (Both Ends) } \end{gathered}$
MB1*	C	1.00	1.39	0.85	3/16	0.58	-	0.170 Flat	0.301/0.302 $\times 0.100 \mathrm{dp}$	3) $4-40 \times 1 / 4 \mathrm{dp} 0.610$ B.C.
MB1.5*	C	1.85	2.35	1.35	1/4	1.00	-	0.230 Flat	0.875/0.874 $\times 0.08 \mathrm{dp}$	3) $6-32 \times 5 / 16 \mathrm{dp} 1.250$ B.C.
MB2*	C	1.85	2.35	1.35	1/4	1.00	-	0.230 Flat	0.875/0.874 $\times 0.08 \mathrm{dp}$	3) $6-32 \times 5 / 16 \mathrm{dp} 1.250$ B.C.
MB3*	C	2.75	3.02	2.00	3/8	1.03	0.03	0.350 Flat	1.383/1.381 x 0.12 dp	3) $10-32 \times 7 / 16 \mathrm{dp} 1.875$ B.C.
MB4*	C	3.23	2.97	2.00	5/8	0.97	0.09	0.518/0.503	1.850/1.849 x 0.08dp	3) $10-32 \times 7 / 16 \mathrm{dp} 2.375$ B.C.
MB5*	C	4.65	4.40	2.65	1	1.75	0.11	0.859/0.844	$2.441 / 2.440 \times 0.100 \mathrm{dp}$	3) $10-32 \times 1 / 2 \mathrm{dp} 3.000$ B.C.
MB5.5*	C	5.29	4.53	2.65	1	1.88	0.25	0.859/0.844	$2.441 / 2.440 \times 0.100 \mathrm{dp}$	3) $10-32 \times 1 / 2 \mathrm{dp} 3.000$ B.C.
MB6**	D	6.10	4.50	2.04	1	2.22	0.18	0.859/0.844	2.441/2.440	3) $1 / 4-20 \times 5 / 16 \mathrm{dp} 2.875$ B.C.
MB9**	D	9.40	5.41	3.49	1	1.80	0.13	0.859/0.844	3.250/3.248	3) $5 / 16-18 \times 1 / 2 \mathrm{dp} 5.875$ B.C.

[^7]
Stub Shaft Adapter

- Utilized when "clutch coupling" configuration is desired.
- Comes complete with attachment hardware and drive key.
- Stub shaft adapters should be used in conjunction with a flexible coupling.

Model Size	Clutch Model	A	B	C	D	E
A2-14	MC2	1.60	0.78	$1 / 4$	0.15	Flat
A3-38	MC3	2.36	1.19	$3 / 8$	0.19	Flat
A4-38	MC4	2.86	1.19	$3 / 8$	0.19	Flat
A4-58	MC4	2.86	1.19	$5 / 8$	0.19	$3 / 16^{\prime \prime}$ Key
A5-1	MC5, MC5.5	3.45	1.72	1	0.27	$1 / 4^{4 \prime}$ Key
A5-12	MC5, MC5.5	3.45	1.47	$1 / 2$	0.27	1/8" Key
A6-34	MC6	3.40	1.70	$0 / 4$	$3 / 16^{\prime \prime}$ Key	

Accurate torque control with instantaneous engagement!

Available in a wide range of models and sizes

Warner Electric's magnetic particle brakes and clutches are quiet and clean and provide outstanding performance in slipping and torque control applications. They are ideal for unwind, rewind, and intermittent (point to point) tension applications. They are also ideal for controlled starting or stopping, torque limiting and cycling applications.
These units use high quality materials and unique designs to provide precision performance, superior heat dissipation and extremely long life. The magnetic powder, made from a patented alloy, provides extreme resistance to heat and wear, and, therefore, promotes long life and high thermal ratings. Also, one of the brake models, the PTB, incorporates a patented heat pipe that further extends its thermal capability. PTB units have thermal ratings three times higher than brakes with natural cooling and equivalent to water-cooled brakes.

Brakes

Six different brake models are available: four with male shafts and two with hollow bores. The units with hollow bores can be shaft-mounted, if desired. Final selection is determined by torque and thermal requirements. The product selection section provides more specific information on these models.

Clutches

Three different clutch models, each with several sizes, are available to handle a variety of applications. The face-mounted models can be used in parallel or inline applications. The shaft-mounted units offer a second option for parallel shaft applications and are ideal for tension rewind applications. Please see the product selection section for more specific information.

Features and Benefits

Precise Control

- Spherical particles provide smooth torque independent of speed. Low speed chatter is also eliminated.
- The magnetic circuit is designed to produce torque proportional to current.
- Unique design requires only one powder seal, thus reducing drag torque and allowing for a wider operating range.

Extremely Long Life

- Spherical particles made from a patented alloy provide outstanding resistance to corrosion and mechanical breakdown.

High Heat Dissipation

- One of the models, the PTB, uses a patented heat pipe that provides heat dissipation levels equal to watercooled units and several times greater than natural cooling.
- The shaft mounted clutches provide self-cooling through the use of an integral fan that rotates with the input.

Clean Operation

- All models are completely enclosed. Ideal for applications where clean operation is desired.

Easy to Mount

- Precision pilots are provided to position units for easy installation.
- Clutches and brakes with hollow bores are offered for applications where shaft mounting is desired.

Smooth Engagement

- Torque characteristics provide for smooth and controllable acceleration or deceleration of the load.

Fast Response

- Fine particles respond quickly to field for millisecond engagement, if required.

No Maintenance

- Adjustment or lubrication is not required.

Quiet Operation

- Engagement is smooth and quiet.

Low Current Draw

- Efficient magnetic circuit design allows for minimal current draw.

Torque independent of slip speed

 Torque is transmitted through magnetic particle chains that are formed by an electromagnetic field. The torque is independent of slip speed, depending only on circuit current, and is infinitely variable from 0 (disengaged) to rated torque.
No wearing parts

There are no friction surfaces to grab or wear, and the units are not affected by changes in atmospheric or other environmental conditions.

Efficient/Compact design

High torque to size ratio and low electric power consumption.

Versatile mounting

Convenient bolt circle for easy mounting. Mounting brackets available for all sizes. Brakes are available with solid shafts and through bores. Can be mounted horizontally or vertically to solve virtually any motion control requirement.

Distributor Item

Off the shelf availability. Interchangeable with industry standard sizes.

Specials Designs

- Special Shaft Configurations

Customer specified shaft configurations for easy machine mounting and retrofitting.

- Wash Down Environment

Stainless steel units available for extreme environments.

- Special Torque

Maximum torque configurations to meet customer specifications.

- Special Mounting Configurations

Customer specified bolt patterns, special mounting brackets.

- Metric units

Design and Operation

Warner Electric magnetic particle clutches and brakes are unique because of the wide operating torque range available. Torque to current is almost linear and can be controlled very accurately. The unique features of the magnetic particle clutches and brakes make them ideal for tension control, load simulation, cycling/indexing, and soft starts and stops. Controls information starts on page 44.

Magnetic Particle Brakes and Clutches

POC Clutch

Input and output shafts for inline or parallel shaft applications.
Other configurations also available.

Principle of Operation

The magnetic particle unit consists of four main components: 1) housing; 2) shaft/disc; 3) coil and 4) magnetic powder. The coil is assembled inside the housing. The shaft/disc fits inside the housing/coil assembly with an air gap between the two; the air gap is filled with fine magnetic powder.

Engagement

When DC current is applied to the magnetic particle unit, a magnetic flux (chain) is formed, linking the shaft/disc to the housing. As the current is increased, the magnetic flux becomes stronger, increasing the torque. The magnetic flux creates extremely smooth torque and virtually no "stick-slip".

Disengagement

When DC current is removed, the magnetic powder is free to move within the cavity, allowing the input shaft to rotate freely.

Cycling

A cycling effect is achieved by turning the current to the coil on and off.

Selection

Unit torque ratings go from as low as $2.0 \mathrm{lb} . \mathrm{in}$. to as high as $578 \mathrm{lb} . \mathrm{ft}$. Also, many models are available to handle specific mounting requirements. The clutch family has three options. The MPC and POC have shaft inputs and outputs and is ideal for inline applications. The PHC models have a hollow bore and can be shaft-mounted for parallel shaft applications. The PMC clutch covers the lower end of the torque range and has a flanged input hub. Also, this unit is often mounted as a brake.
The brake family includes seven models. The MPB covers the low torque ranges and comes with shaft inputs or hollow bores. The POB is a shaft input brake that covers the medium and high torque extremes of the torque range. The PRB series covers the mid range. With four models that have different input and housing options. The PTB model uses a patented heat pipe cooling method that has a cooling capacity equivalent to water-cooled units, but without the hassles of water cooling.

Selection Requirements

To properly size a magnetic particle brake or clutch, torque transmitted and heat generated must be considered. If you know these values, refer to the specifications and thermal curves to select a unit. For sizing and selection calculation see pages 16 through 28. To select a control for your application refer to the control section on page 44.

Description

Low and high torque units. Light duty thermal. All brakes have output shafts and pilots for mounting. Optional brackets available.

Low and high torque units are offered in this model. All units have male input shafts and pilots for mounting, except for the size 80, which is foot-mounted.

This is the basic PRB model. It is offered with a hollow bore and a pilot for mounting.

The PTB-BL L_{3} offers superior heat dissipation capability. Units are pilot-mounted and a male input shaft is provided for connecting to the load.

Cooling Method	Applications	Dimension Drawings (page no.)
Natural	Tension unwind, light duty unwind	116
Natural	Tension unwind	Tension unwind Neatural Pipe with 115VAC blower
Tension unwind, load for testing. Ideal for applications requiring high heat dissipation	120	

Mechanical and Electrical Data (24 VDC)									
Model	Size	$\begin{gathered} \text { Torque } \\ \text { lb.ft. } \\ \text { (lb.in.) } \end{gathered}$	Drag Torque lb.ft. (Ib.in.)	Max. Speed RPM	$\begin{gathered} \text { Inertia } \\ \text { Ib.ft. }{ }^{2} \\ \text { (Ib.in. }{ }^{2} \text {) } \end{gathered}$	$\begin{gathered} \text { Resistance } \\ \text { Ohms } \\ 75^{\circ} \mathrm{F} \end{gathered}$	Amperes 75° F	Max. Heat Diss. Watts @ Max. RPM	Weight lbs.
MPB	2	(2)	(.40)	1800	$\left(1.31 \times 10^{-3}\right)$	303	0.079	10	1
	15	(15)	(.40)	1000	$\left(1.39 \times 10^{-2}\right)$	80	0.302	20	3
	70	(70)	(1)	1000	$\left(8.03 \times 10^{-2}\right)$	35	0.677	100	7
	120	(120)	(2)	1000	(3.75 $\times 10^{-1}$)	33	0.742	140	12
	240	(240)	(4)	1000	(1.35)	14	1.693	200	20
POB	0.3	2.1	. 065	1800	. 0128	35.6	. 674	105	5.5
	0.6	4.3	. 13	1800	. 0173	21.1	1.14	80	7.9
	1.2	8.6	. 26	1800	. 0304	20.6	1.16	145	12
	2.5	18	. 54	1800	. 0973	15.8	1.52	195	22
	5	36	1.1	1800	. 249	8.8	2.74	290	38
	10	72	2.2	1800	1.04	9.0	2.68	460	77
	20	144	4.3	1800	2.23	7.2	3.34	790	128
	40	289	8.7	1800	5.93	5.1	4.66	1990	220
	80	578	17	1800	23.5	4.3	5.57	3900	551
PRB-H	1.2	8.6	. 26	1800	. 104	31.6	. 760	95	11
	2.5	18	. 54	1800	. 161	25.6	. 937	118	15
	5	36	1.1	1800	. 453	19.3	1.24	170	29
	10	72	2.2	1800	1.51	14.8	1.62	355	57
	20	144	4.3	1800	4.46	12.5	1.93	570	101
PTB	2.5	18	. 54	1800	. 0973	15.8	1.52	880	24
	5	36	1.1	1800	. 249	8.8	2.74	1850	38
	10	72	2.2	1800	1.04	9.0	2.68	3050	76
	20	144	4.3	1800	2.23	7.20	3.34	4400	114
PMC-A ${ }_{3}$	10	(8.6)	(.25)	1800	. 239	35.1	. 684	30	2
	20	(17)	(.51)	1800	. 413	31.6	. 760	40	2.9
	40	(34)	(1)	1800	1.14	26.3	. 912	68	5.5
MPC	2	(2)	(.40)	1800	$\left(1.33 \times 10^{-3}\right)$	303	0.079	10	1
	15	(15)	(.40)	1000	$\left(1.48 \times 10^{-2}\right)$	80	0.302	20	6
	70	(70)	(1)	1000	$\left(8.89 \times 10^{-2}\right)$	35	0.677	100	17
	120	(120)	(2)	1000	(3.62 $\times 10^{-1}$)	33	0.742	140	22
PHC-R	0.6	4.3	. 13	1800	. 0223	21.1	1.14	105	9.3
	1.2	8.6	. 26	1800	. 0392	20.6	1.16	200	13
	2.5	18	. 54	1800	. 126	15.8	1.52	395	22
	5	36	1.1	1800	. 323	8.8	2.74	620	38
	10	72	2.2	1500	1.42	9.0	2.68	940	95
	20	144	4.3	1500	3.01	7.20	3.34	1350	154
POC	0.3	2.1	. 065	1800	. 0128	35.6	. 674	105	5.5
	0.6	4.3	. 13	1800	. 0173	21.1	1.14	80	7.9
	1.2	8.6	. 26	1800	. 0304	20.6	1.16	145	12
	2.5	18	. 54	1800	. 0973	15.8	1.52	195	22
	5	36	1.1	1800	. 249	8.8	2.74	290	38
	10	72	2.2	1800	1.04	9.0	2.68	460	77
	20	144	4.3	1800	2.23	7.2	3.34	790	128
	40	289	8.7	1800	5.93	5.1	4.66	1990	220
	80	578	17	1800	23.5	4.3	5.57	3900	551

Selection Requirements

Torque

The torque required is calculated differently for different applications. For tension applications, torque is a function of roll radius and tension. For controlled starting and stopping, torque is a function of inertia, speed, and desired time to start or stop the load. For torque limiting applications, allowable drive through torque is used to select a unit. Please follow the selection example that applies to your application to determine the torque required in units of pound-feet.

Heat

When a brake or clutch is slipping, heat is generated. This is the result of
mechanical energy being converted to thermal energy. Tension applications are considered continuous slip applications. Heat generated is a function of tension and linear material speed and is generally described in terms of "thermal horsepower" (HPt). For starting and stopping applications, heat is generated when the unit slips during the stopping and starting of the load. Here heat is a function of speed, inertia, and cycle rate, and is described in terms "energy rate" (ft. Ibs./min.). The selection example that fits your application will determine heat in the appropriate units.
The amount of energy the application produces must be less than the capabilities of the clutch or brake to dissipate. If the energy generated by the
application is greater, then the controlling device will be destroyed from excessive heat buildup.
Environmental considerations such as $-25^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-31.7^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ high ambient temperature can reduce the unit's ability to dissipate heat. For applications with high ambient temperatures or where heat dissipation is marginal, fans or blowers may be used to improve dissipation.

Heat Dissipation Curves

Determine your slip RPM requirements and torque requirements. Where the two points intersect must be under the curve for the unit selected. Remember to check at both minimum and maximum torque-speed conditions.

MPC/MPB Clutches/Brakes

Heat Dissipation Curves

Operating Temperature

The surface temperature of the unit must be less than the temperature indicated in the following chart.

Maximum Surface Temperature	
Model	Temp (${ }^{\circ}$ F)
PMC-A ${ }_{3}$	167
POC/PHC-R/POB	176
PRB/PTB-BL	194

PHC-R Clutches

POC/POB Clutches/Brakes

PMC-A ${ }_{3}$ Clutches or Brakes

Magnetic Particle Brakes and Clutches

PTB-BL ${ }_{3}$ Brakes

PRB-1.2H, 2.5H,5H,10H and 20 H

Optional mounting bracket，see page 127.
Dimensions inches

| Model | A | B | C | D | E | F | G | H | I（Shaft） | J（Bore） | L | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MPB2－1 | 2.11 | $0.750 / 0.749$ | 2.23 | 1.15 | 0.06 | 0.72 | 0.88 | - | $0.2947 / 0.2492$ | Solid Shaft | (3) \＃6－32 on 1.350 BC | |
| MPB15－1 | 2.93 | $1.125 / 1.124$ | 3.05 | 1.46 | 0.07 | 0.86 | 1.35 | - | $0.3747 / 0.3742$ | Solid Shaft | (3) \＃8－32 on 2.000 BC | |
| MPB15－2 | 2.93 | $1.125 / 1.124$ | 2.05 | 1.46 | 0.07 | 0.86 | 0.35 | 0.18 | 0.499 | $0.375 / 0.376$ | (3) \＃8－32 on 2.000 BC | |
| MPB15－3 | 2.93 | $1.125 / 1.124$ | 2.70 | 1.46 | 0.07 | 0.86 | 1.00 | - | $0.4997 / 0.4992$ | Solid Shaft | （3）\＃8－32 on 2.000 BC | |
| MPB70－1 | 4.48 | $1.625 / 1.624$ | 2.62 | 1.76 | 0.10 | 0.98 | 0.50 | 0.18 | 0.749 | $0.500 / 0.501$ | （4）\＃10－32 on 4.228 BC | 0.125 Thru Hole |
| MPB70－2 | 4.48 | $1.625 / 1.624$ | 3.37 | 1.76 | 0.10 | 0.98 | 1.25 | - | $0.7497 / 0.7492$ | Solid Shaft | （4）\＃10－32 on 4.228 BC | 0.188 Keyway |
| MPB120－1 | 5.25 | $1.625 / 1.624$ | 4.02 | 2.17 | 0.10 | 1.18 | 1.50 | 0.50 | 0.749 | $0.500 / 0.501$ | （4）\＃1／4－20 on 4.812 BC | 0.156 Thru Hole |
| MPB120－2 | 5.25 | $1.625 / 1.624$ | 4.02 | 2.17 | 0.10 | 1.18 | 1.50 | - | $0.7497 / 0.7492$ | Solid Shaft | （4）\＃1／4－20 on 4.812 BC | 0.188 Keyway |
| MPB240－1 | 6.21 | $2.441 / 2.440$ | 4.66 | 2.65 | 0.10 | 1.46 | 1.65 | - | $0.7497 / 0.7492$ | Solid Shaft | （4）\＃1／4－20 on 5.875 BC | 0.188 Keyway |
| MPB240－2 | 6.21 | $2.441 / 2.440$ | 3.51 | 2.65 | 0.10 | 1.46 | 0.50 | - | 1.377 | $0.875 / 0.876$ | （4）\＃1／4－20 on 5.875 BC | 0.188 Keyway |
| MPB240－3 | 6.21 | $2.441 / 2.440$ | 3.51 | 2.65 | 0.10 | 1.46 | 0.50 | - | 1.377 | $1.000 / 1.001$ | （4）\＃1／4－20 on 5.875 BC | 0.250 Shallow Keyway |

Specifications

Model Number	Max．Drag Torque 0 Excit．（Ib．in．）	Rated Torque （lb．in．）	Rated Voltage	Resistance （Ohms）	Rated Current （Amps）	Build W／out OEX （Millisec）	Time With OEX （Millisecs）	Inertia of Output Shaft （lb．in．${ }^{2}$ ）	Max．Heat Dissipation （watts）	Max．Speed Recom． （RPM）	Weight
MPB2	0.40	2	24	92	0.261	8	4	1.31×10^{-3}	10	1，800	1
	0.40	2	90	1，552	0.058	8	4	1.31×10^{-3}	10	1，800	1
MPB15	0.40	15	24	80	0.302	25	9	1.39×10^{-2}	20	1，000	3
	0.40	15	90	1，501	0.060	25	9	1.39×10^{-2}	20	1，000	3
MPB70	1.00	70	24	35	0.677	70	17	8.03×10^{-2}	100	1，000	7
	1.00	70	90	613	0.147	70	17	8.03×10^{-2}	100	1，000	7
MPB120	2.00	120	24	33	0.742	90	25	3.75×10^{-1}	140	1，000	12
	2.00	120	90	475	0.190	90	25	3.75×10^{-1}	140	1，000	12
MPB240	4.00	240	24	19	1.286	150	45	1.35	200	1，000	20
	4.00	240	90	246	0.366	150	45	1.35	200	1，000	20

Note：All dimensions are nominal unless otherwise noted．

Dimensions

inches (mm)

										N			
Size	A	B	C	D	E	F	G	H*	I	Thread Size	Depth	Num. of Holes	Bolt Circle
2.5	$\begin{aligned} & 7.17 \\ & (182) \end{aligned}$	$\begin{gathered} 8.72 \\ (221.5) \end{gathered}$	$\begin{gathered} 6.67 \\ (169.5) \end{gathered}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (15) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38) \end{aligned}$	$\begin{aligned} & \square 4.72 \\ & \square(120) \end{aligned}$	$\begin{gathered} 2.1654 / 2.1642 \\ (55.000 / 54.970) \end{gathered}$	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6	$\begin{gathered} 3.071 \\ (78) \end{gathered}$
5	$\begin{aligned} & 8.62 \\ & (219) \end{aligned}$	$\begin{gathered} 10.81 \\ (274.5) \end{gathered}$	$\begin{gathered} 8.19 \\ (208) \end{gathered}$	$\begin{gathered} 2.42 \\ (61.5) \end{gathered}$	$\begin{aligned} & 0.91 \\ & (23) \end{aligned}$	$\begin{aligned} & 2.24 \\ & (57) \end{aligned}$	$\begin{aligned} & 1.85 \\ & (47) \end{aligned}$	$\begin{aligned} & \circ 5.91 \\ & \circ(150) \end{aligned}$	$\begin{gathered} \text { 2.9134/2.9122 } \\ (74.000 / 73.970) \end{gathered}$	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6	$\begin{aligned} & 3.937 \\ & (100) \end{aligned}$
10	$\begin{aligned} & 11.42 \\ & (290) \end{aligned}$	$\begin{aligned} & 13.19 \\ & (335) \end{aligned}$	$\begin{aligned} & 10.12 \\ & (257) \end{aligned}$	$\begin{gathered} 2.42 \\ (61.5) \end{gathered}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{aligned} & 2.64 \\ & (67) \end{aligned}$	$\begin{aligned} & 2.20 \\ & (56) \end{aligned}$	$\begin{aligned} & \circ 5.91 \\ & \circ(150) \end{aligned}$	$\begin{gathered} 3.9370 / 3.9356 \\ (100.000 / 99.965) \end{gathered}$	M10	$\begin{aligned} & 0.71 \\ & (18) \end{aligned}$	6	$\begin{aligned} & 5.512 \\ & (140) \end{aligned}$
20	$\begin{aligned} & 13.19 \\ & (335) \end{aligned}$	$\begin{gathered} 13.88 \\ (352.5) \end{gathered}$	$\begin{gathered} 10.61 \\ (269.5) \end{gathered}$	$\begin{gathered} 2.42 \\ (61.5) \end{gathered}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{aligned} & 2.80 \\ & (71) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & \circ 5.91 \\ & \circ(150) \end{aligned}$	$\begin{gathered} 4.3307 / 4.3293 \\ (110.000 / 109.965) \end{gathered}$	M10	$\begin{aligned} & 0.71 \\ & (18) \end{aligned}$	6	$\begin{aligned} & 5.906 \\ & (150) \end{aligned}$

[^8]Note: All dimensions are nominal unless otherwise noted

Dimensions

Sizes 0.3 through 40

End View (POB-0.6, 1.2, 2.5, 5.0, 10 and 20)

							Shaft Dimensions					L			
Model	A	B	C	D	E	F	G	H	1	J	K	Thread Size	Depth	No. of Holes	Bolt Circle
POB-0.3	$\begin{aligned} & 4.72 \\ & (120) \end{aligned}$	$\begin{aligned} & 4.13 \\ & (105) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23) \end{aligned}$	2.95 (75)	0.43 (11)	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{aligned} & 0.3937 / 0.3931 \\ & (10.000 / 9.985) \end{aligned}$	$\begin{gathered} \hline 0.1584 / 0.1580 \\ (4.024 / 4.012) \end{gathered}$	0.16 (4)	$\begin{aligned} & 0.10 \\ & (2.5) \end{aligned}$	M5	$\begin{gathered} 0.39 \\ (10) \end{gathered}$	6	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POB-0.6	$\begin{aligned} & 5.28 \\ & (134) \end{aligned}$	$\begin{aligned} & 4.29 \\ & (109) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (26) \end{aligned}$	$\begin{gathered} 3.01 \\ (76.5) \end{gathered}$	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	$\begin{gathered} 2.62 \\ (66.5) \end{gathered}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{gathered} 0.4724 / 0.4717 \\ (12.000 / 11.982) \end{gathered}$	$\begin{gathered} 0.1584 / 0.1580 \\ (4.024 / 4.012) \end{gathered}$	0.16 (4)	$\begin{aligned} & 0.10 \\ & (2.5) \end{aligned}$	M5	0.43 (11)	6	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POB 1.2	$\begin{aligned} & 5.98 \\ & (152) \end{aligned}$	$\begin{gathered} 5.14 \\ (130.5) \end{gathered}$	$\begin{gathered} 1.36 \\ (34.5) \end{gathered}$	$\begin{gathered} 3.52 \\ (89.5) \end{gathered}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{gathered} 3.01 \\ (76.5) \end{gathered}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{gathered} 0.5906 / 0.5898 \\ (15.000 / 14.982) \end{gathered}$	$\begin{gathered} 0.1978 / 0.1973 \\ (5.024 / 5.012) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 0.12 \\ & (3.0) \end{aligned}$	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POB 2.5	$\begin{aligned} & 7.17 \\ & (182) \end{aligned}$	$\begin{aligned} & 6.10 \\ & (155) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{aligned} & 4.06 \\ & (103) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (15) \end{aligned}$	$\begin{aligned} & 3.46 \\ & (88) \end{aligned}$	$\begin{aligned} & 2.1654 / 2.1642 \\ & (55.000 / 54.970) \end{aligned}$	$\begin{gathered} 0.7874 / 0.7866 \\ (20.000 / 19.979) \end{gathered}$	$\begin{gathered} 0.1978 / 0.1973 \\ (5.024 / 5.012) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 0.12 \\ & (3.0) \end{aligned}$	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6	$\begin{gathered} 3.071 \\ (78) \end{gathered}$
POB 5.0	$\begin{aligned} & 8.62 \\ & (219) \end{aligned}$	$\begin{aligned} & 7.44 \\ & (189) \end{aligned}$	$\begin{array}{r} 2.24 \\ (57) \end{array}$	$\begin{gathered} 4.82 \\ (122.5) \end{gathered}$	$\begin{aligned} & 0.91 \\ & (23) \end{aligned}$	$\begin{gathered} 3.92 \\ (99.5) \end{gathered}$	$\begin{gathered} 2.9134 / 2.9122 \\ (74.000 / 73.970) \end{gathered}$	$\begin{gathered} 0.9843 / 0.9834 \\ (25.000 / 24.979) \end{gathered}$	$\begin{gathered} 0.2768 / 0.2762 \\ (7.030 / 7.015) \end{gathered}$	0.28 (7)	$\begin{aligned} & 0.16 \\ & (4.0) \end{aligned}$	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6	$\begin{aligned} & 3.937 \\ & (100) \end{aligned}$
POB 10	$\begin{aligned} & 11.42 \\ & (290) \end{aligned}$	$\begin{gathered} 9.19 \\ (233.5) \end{gathered}$	$\begin{gathered} 2.64 \\ (67) \end{gathered}$	$\begin{gathered} 6.12 \\ (155.5) \end{gathered}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{gathered} 5.14 \\ (130.5) \end{gathered}$	$3.9370 / 3.9356$ $(100.000 / 99.965)$	$\begin{gathered} 1.1811 / 1.1803 \\ (30.000 / 29.979) \end{gathered}$	$\begin{gathered} 0.2768 / 0.2762 \\ (7.030 / 7.015) \end{gathered}$	$\begin{gathered} 0.28 \\ (7) \end{gathered}$	$\begin{aligned} & 0.16 \\ & (4.0) \end{aligned}$	M10	$\begin{aligned} & 0.71 \\ & (18) \end{aligned}$	6	$\begin{aligned} & 5.512 \\ & (140) \end{aligned}$
POB 20	$\begin{aligned} & 13.19 \\ & (335) \end{aligned}$	$\begin{gathered} 10.37 \\ (263.5) \end{gathered}$	$\begin{aligned} & 2.80 \\ & (71) \end{aligned}$	$\begin{gathered} 7.11 \\ (180.5) \end{gathered}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{gathered} 6.12 \\ (155.5) \end{gathered}$	$\begin{gathered} 4.3307 / 4.3293 \\ (110.000 / 109.965) \end{gathered}$	$\begin{gathered} 1.3780 / 1.3770 \\ (35.000 / 34.975) \end{gathered}$	$\begin{gathered} 0.3949 / 0.3943 \\ (10.030 / 10.015) \end{gathered}$	0.31 (8)	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	M10	$\begin{aligned} & 0.71 \\ & (18) \end{aligned}$	6	$\begin{aligned} & 5.906 \\ & (150) \end{aligned}$
POB-40	$\begin{aligned} & 15.55 \\ & (395) \end{aligned}$	$\begin{aligned} & 12.99 \\ & (330) \end{aligned}$	$\begin{aligned} & 3.62 \\ & (92) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.82 \\ & (224) \end{aligned}$	$\begin{aligned} & 1.30 \\ & (33) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.52 \\ & (191) \end{aligned}$	$\left.\right\|_{(130.000 / 129.960)} ^{5.1181 / 5.1165}$	$\begin{gathered} 1.7717 / 1.7707 \\ (45.000 / 44.975) \end{gathered}$	$\begin{gathered} 0.4739 / 0.4731 \\ (12.036 / 12.018) \end{gathered}$	$\begin{gathered} 0.31 \\ (8) \\ \hline \end{gathered}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	M12	$\begin{aligned} & 0.79 \\ & (20) \\ & \hline \end{aligned}$	8	$\begin{aligned} & 2.520 \\ & (200) \end{aligned}$

Note: All dimensions are nominal unless otherwise noted.

Size 80

Specifications

	Part Number	Rated Torque (lb. ft.)	E-Stop Torque (lb. ft.)	Drag Torque (lb. ft.)	Maximum Speed (rpm)	Inertia Input (lb. ft. ${ }^{2}$)	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
0.3	$5401-169-211$	2.1	3.0	.065	1,800	.0128	105	5.3
0.6	$5401-169-221$	4.3	5.9	.13	1,800	.0173	80	7.5
1.2	$5401-169-231$	8.6	12.0	.26	1,800	.0304	145	11.5
2.5	$5401-169-241$	18	23.0	.54	1,800	.0973	195	24.3
5.0	$5401-169-251$	36	43.0	1.1	1,800	.0249	290	35.3
10	$5401-169-261$	72	101.0	2.2	1,800	1.04	460	72.8
20	$5401-169-271$	144	180.0	4.3	1,800	2.23	790	106
40	$5401-169-281$	289	361	8.7	1,800	5.93	1,990	176
80	$5401-169-291$	578	723	17	1,500	23.5	3,900	573

Note: All dimensions are nominal unless otherwise noted.

Dimensions

inches (mm)

Specifications

	Part Number	Torque (lb. ft.)	E-Stop Torque (lb. ft.)	Drag (orque (lb. ft.)	Maximum Speed (rpm)	Inertia Input (lb. ft. ${ }^{2}$)	Max. Heat Diss. Watts	
1.2	$5401-169-331$	8.6	12	.26	1,800	.104	95	11
2.5	$5401-169-341$	18	23	.54	1,800	.161	118	15
5	$5401-169-351$	36	43	1.1	1,800	.453	170	29
10	$5401-169-361$	72	101	2.2	1,800	1.51	355	57
20	$5401-169-371$	144	180	4.3	1,800	4.46	570	101

Bore Sizes			
Size	I	J	K
1.2	$\begin{gathered} 0.5913 / 0.5906 \\ \left(15.018 / 15.000^{*}\right) \end{gathered}$	$\begin{aligned} & 0.1980 / 0.1972 \\ & (5.028 / 5.010) \end{aligned}$	$\begin{gathered} 0.6791 / 0.6693 \\ (17.250 / 17.000) \end{gathered}$
2.5	$\begin{gathered} 0.7882 / 0.7874 \\ \left(20.021 / 20.000^{\star}\right) \end{gathered}$	$\begin{aligned} & 0.1980 / 0.1972 \\ & (5.028 / 5.010) \end{aligned}$	$\begin{gathered} 0.8760 / 0.8661 \\ (22.250 / 22.000) \end{gathered}$
5	$\begin{gathered} 1.1819 / 1.1811 \\ \left(30.021 / 30.000^{\star}\right) \end{gathered}$	$\begin{aligned} & 0.2770 / 0.2761 \\ & (7.035 / 7.013) \end{aligned}$	$\begin{gathered} 1.3091 / 1.2992 \\ (33.250 / 33.000) \end{gathered}$
10	$\begin{gathered} 1.1819 / 1.1811 \\ (30.021 / 30.000) \end{gathered}$	$\begin{aligned} & 0.2770 / 0.2761 \\ & (7.035 / 7.013) \end{aligned}$	$\begin{gathered} 1.3091 / 1.2992 \\ (33.250 / 33.000) \end{gathered}$
20	$\begin{gathered} 1.5758 / 1.5748 \\ (40.025 / 40.000) \end{gathered}$	$\begin{gathered} 0.3951 / 0.3942 \\ (10.035 / 10.013) \end{gathered}$	$\begin{gathered} 1.7224 / 1.7126 \\ (43.750 / 43.500) \end{gathered}$

* For availability of inch series bores, contact your Warner Electric representative.

inches (mm)

									L			
Size	A	B	C	D	E	F	G	H	Thread Size	No. of Depth	Bolt Holes	Circle
1.2	$\begin{array}{r} 5.35 \\ (136) \end{array}$	$\begin{aligned} & 2.48 \\ & \text { (63) } \end{aligned}$	$\begin{aligned} & 1.65 \\ & (42) \end{aligned}$	$\begin{gathered} 0.28 \\ (7) \end{gathered}$	$\begin{aligned} & 0.22 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 2.09 \\ & (53) \end{aligned}$	$\begin{aligned} & 4.29 \\ & (109) \end{aligned}$	$\begin{gathered} 5.3543 / 5.3528 \\ (136.000 / 135.960) \end{gathered}$	M5	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{gathered} 4.92 \\ (125) \end{gathered}$
2.5	$\begin{gathered} 6.30 \\ (160) \end{gathered}$	$\begin{aligned} & 2.87 \\ & (73) \end{aligned}$	$\begin{aligned} & 1.85 \\ & (47) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 0.26 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 4.88 \\ & (124) \end{aligned}$	$\begin{gathered} 6.2992 / 6.2976 \\ (160.000 / 159.960) \end{gathered}$	M5	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{aligned} & 5.83 \\ & (148) \end{aligned}$
5	$\begin{aligned} & 7.68 \\ & (195) \end{aligned}$	$\begin{gathered} 3.33 \\ (84.5) \end{gathered}$	$\begin{aligned} & 2.24 \\ & (57) \end{aligned}$	$\begin{gathered} 0.31 \\ (8) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 2.64 \\ & (67) \end{aligned}$	$\begin{gathered} 5.87 \\ (149) \end{gathered}$	$\begin{gathered} 7.6772 / 7.6754 \\ (195.000 / 194.954) \end{gathered}$	M6	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	6	$\begin{aligned} & 7.13 \\ & (181) \end{aligned}$
10	$\begin{gathered} 9.84 \\ (250) \end{gathered}$	$\begin{gathered} 4.09 \\ (104) \end{gathered}$	$\begin{aligned} & 2.68 \\ & \text { (68) } \end{aligned}$	$\begin{aligned} & 0.33 \\ & (8.5) \end{aligned}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 3.07 \\ & (78) \end{aligned}$	$\begin{gathered} 7.40 \\ (188) \end{gathered}$	$\begin{gathered} 9.8425 / 9.8407 \\ (250.000 / 249.954) \end{gathered}$	M6	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	8	$\begin{aligned} & 9.17 \\ & (233) \end{aligned}$
20	$\begin{aligned} & 12.01 \\ & (305) \\ & \hline \end{aligned}$	$\begin{gathered} 5.06 \\ (128.5) \\ \hline \end{gathered}$	$\begin{array}{r} 3.15 \\ (80) \\ \hline \end{array}$	$\begin{aligned} & 0.47 \\ & (12) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.74 \\ & \text { (95) } \\ & \hline \end{aligned}$	$\begin{gathered} 9.21 \\ (234) \\ \hline \end{gathered}$	$\begin{gathered} 12.0079 / 12.0058 \\ (305.000 / 304.948) \\ \hline \end{gathered}$	M8	$\begin{aligned} & 0.47 \\ & (12) \\ & \hline \end{aligned}$	8	$\begin{aligned} & 11.10 \\ & (282) \\ & \hline \end{aligned}$

Note: All dimensions are nominal unless otherwise noted.

PMC Series Clutches/Brakes

Dimensions Sizes 10 and 20

Specifications

Size	Part Number	Torque (lb. in.)	E-Stop Torque (lb. in.)	Drag Torque (lb. in.)	Maximum Speed (rpm)	Inertia Input (lb. in. ${ }^{2}$)	$\begin{aligned} & \text { Output } \\ & \text { (lb. in. }{ }^{2} \text {) } \end{aligned}$	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
10	5401-270-111	8.6	11.5	. 25	1,800	. 239	. 0291	30	2.0
20	5401-270-121	17	20.4	. 51	1,800	. 413	. 0752	40	2.9

inches (mm)

Size	A	B	C	D	E	F	G	H	I	J	K	L	M
10	2.28	3.03	0.55	0.16	0.59	0.47	0.47	0.31	0.24	0.39	0.39	2.01	2.99
	(58)	(77)	(14)	(4)	(15)	(12)	(12)	(8)	(6)	(10)	(10)	(51)	(76)
	2.72	4.57	1.30	0.16	0.87	0.98	0.94	0.59	0.24	0.79	0.79	2.01	3.62
20	(69)	(116)	(33)	(4)	(22)	(25)	(24)	(15)	(6)	(20)	(20)	(51)	(92)
	(35)												

			Shaft Dimensions			U			V	
Size	P	Q	R	S	T	Thread Size	Depth	Bolt Circle	Hole Size	Bolt Circle
10	$\begin{gathered} 2.1260 / 2.1248 \\ (54.000 / 53.970) \end{gathered}$	$\begin{gathered} 2.2835 / 2.2823 \\ (58.000 / 57.970) \end{gathered}$	$\begin{aligned} & 0.2756 / 0.2750 \\ & (7.000 / 6.985) \end{aligned}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	-	M4	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 1.81 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 2.68 \\ & \text { (68) } \end{aligned}$
20	$\begin{gathered} 2.1260 / 2.1248 \\ (54.000 / 53.970) \end{gathered}$	$\begin{gathered} 2.7165 / 2.7154 \\ (69.000 / 68.970) \end{gathered}$	$\begin{gathered} 0.4724 / 0.4720 \\ (12.000 / 11.988) \end{gathered}$	$\begin{gathered} 0.45 \\ (11.5) \end{gathered}$	$\begin{gathered} 0.45 \\ (11.5) \end{gathered}$	M4	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 1.81 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 3.23 \\ & \text { (82) } \end{aligned}$

Note: All dimensions are nominal unless otherwise noted.

PMC Series Clutches/Brakes

Dimensions

Specifications

	Part Number	Torque (lb. in.)	E-Stop Torque (lb. in.)	Drag Torque (lb. in.)	Maximum Speed (rpm)	Inertia Input (lb. in. ${ }^{2}$)	Max. Heat (lb. in. $\left.{ }^{2}\right)$	Diss. Watts @ Max. RPM	Weight (lbs.)
40	$5401-270-131$	34	42.5	1.0	1,800	1.14	.372	68	5.5

inches (mm)														
Size	A	B	C	D	E	F	G	H	I	J	K	L	M	N
40	3.39	3.82	0.83	0.16	0.87	0.39	0.34	0.59	0.24	0.16	0.16	2.32	4.41	1.97
	(86)	(97)	(21)	(4)	(22)	(10)	(8.7)	(15)	(6)	(4)	(4)	(59)	(112)	(50)

Size	P	Q	Bore R	U			V	
				Thread Size	Depth	Bolt Circle	Hole Size	Bolt Circle
40	$\begin{gathered} 2.7559 / 2.7547 \\ (70.000 / 69.970) \end{gathered}$	$\begin{gathered} 3.3858 / 3.3844 \\ (86.000 / 85.965) \end{gathered}$	$\begin{gathered} 0.4731 / 0.4724 \\ (12.018 / 12.000) \end{gathered}$	M4	0.24 (6)	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	$\begin{gathered} 3.94 \\ (100) \end{gathered}$

Note: All dimensions are nominal unless otherwise noted.

Optional mounting bracket, see page 127.
Dimensions inches

| Model | A | B | C | D | E | F | G (Output) | H (Input) | I | K | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MPC2 | 2.11 | $0.750 / 0.749$ | 3.82 | 1.86 | 0.06 | 1.14 | 0.88 | 0.88 | $0.2497 / 0.2492$ | (3) \#6-32 on 1.350 BC | |
| MPC15 | 2.96 | $1.125 / 1.124$ | 4.81 | 2.80 | 0.07 | 1.67 | 1.00 | 1.00 | $0.4997 / 0.4992$ | (3) \#8-32 on 2.000 BC | |
| MPC70 | 4.48 | $1.625 / 1.624$ | 6.55 | 3.67 | 0.10 | 2.08 | 1.35 | 1.35 | $0.7497 / 0.7492$ | (4) \#10-32 on 4.228 BC | 0.188 Keyway |
| MPC120 | 5.25 | $1.625 / 1.624$ | 7.02 | 4.00 | 0.10 | 2.40 | 1.50 | 1.35 | $0.7497 / 0.7492$ | (4) \#1/4-20 on 4.812 BC | 0.188 Keyway |

Specifications

Model Number	Max. Drag Torque 0 Excit. (Ib.in.)	Rated Torque (lb.in.)	Rated Voltage	Resistance (Ohms)	Rated Current (Amps)	Build W/out OEX (Millisec)	Time With OEX (Millisecs)	Inertia of Output Shaft (lb.in. ${ }^{2}$)	Max. Heat Dissipation (watts)	Max. Speed Recom. (RPM)	Weight
MPC2	0.40	2	24	92	0.261	8	4	1.33×10^{-3}	10	1,800	1
	0.40	2	90	1552	0.058	8	4	1.33×10^{-3}	10	1,800	1
MPC15	0.40	15	24	80	0.302	25	9	1.48×10^{-2}	20	1,000	6
	0.40	15	90	1501	0.060	25	9	1.48×10^{-2}	20	1,000	6
MPC70	1.00	70	24	35	0.677	70	17	8.84×10^{-2}	100	1,000	17
	1.00	70	90	613	0.147	70	17	8.84×10^{-2}	100	1,000	17
MPC120	2.00	120	24	33	0.742	90	25	3.82×10^{-1}	140	1,000	22
	2.00	120	90	475	0.190	90	25	3.82×10^{-1}	140	1,000	22

Note: All dimensions are nominal unless otherwise noted.

Dimensions

inches (mm)

								K				L			
Size	A	B	C	D	E	F	G	Thread Size	Depth	Num. of Holes	Bolt Circle	Thread Size	Depth	Num. of Holes	Bolt Circle
0.6	$\begin{gathered} 5.28 \\ (134) \end{gathered}$	$\begin{aligned} & 3.62 \\ & (92) \end{aligned}$	0.16 (4)	$\begin{gathered} 1.00 \\ (25.5) \end{gathered}$	$\begin{aligned} & 3.50 \\ & (89) \end{aligned}$	$\begin{gathered} \text { 1.9685/1.9675 } \\ (50.000 / 49.975) \end{gathered}$	$\begin{gathered} \text { 1.9685/1.9675 } \\ (50.000 / 49.975) \end{gathered}$	M4	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	6	$\begin{gathered} 2.362 \\ (60) \end{gathered}$	M4	0.24 (6)	6	$\begin{gathered} 2.362 \\ (60) \end{gathered}$
1.2	$\begin{gathered} 5.98 \\ (152) \end{gathered}$	$\begin{aligned} & 3.78 \\ & \text { (96) } \end{aligned}$	$\begin{gathered} 0.16 \\ (4) \end{gathered}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{aligned} & 3.50 \\ & \text { (89) } \end{aligned}$	$\begin{gathered} 1.7717 / 1.7707 \\ (45.000 / 44.975) \end{gathered}$	$\begin{gathered} 2.7559 / 2.7547 \\ (70.000 / 69.970) \end{gathered}$	M5	$\begin{aligned} & 0.24 \\ & (6) \end{aligned}$	6	$\begin{gathered} 2.165 \\ (55) \end{gathered}$	M4	0.31 (8)	6	$\begin{gathered} 3.150 \\ (80) \end{gathered}$
2.5	$\begin{aligned} & 7.17 \\ & (182) \end{aligned}$	$\begin{gathered} 5.20 \\ (132) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 1.77 \\ & (45) \end{aligned}$	$\begin{aligned} & 5.51 \\ & (140) \end{aligned}$	$\begin{gathered} 2.7559 / 2.7547 \\ (70.000 / 69.970) \end{gathered}$	$\begin{gathered} 2.7559 / 2.7429 \\ (70.000 / 69.670) \end{gathered}$	M6	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{gathered} 3.150 \\ (80) \end{gathered}$	M6	$\begin{gathered} 0.35 \\ (9) \end{gathered}$	6	$\begin{gathered} 3.150 \\ (80) \end{gathered}$
5	$\begin{gathered} 8.62 \\ (219) \end{gathered}$	$\begin{gathered} 5.83 \\ (148) \end{gathered}$	$\begin{gathered} 0.16 \\ (4) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 6.50 \\ (165) \end{gathered}$	$\begin{gathered} 3.4252 / 3.4238 \\ (87.000 / 86.965) \end{gathered}$	$\begin{gathered} 3.4252 / 3.4238 \\ (87.000 / 86.965) \end{gathered}$	M8	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{aligned} & 4.016 \\ & (102) \end{aligned}$	M8	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{aligned} & 4.016 \\ & (102) \end{aligned}$
10	$\begin{aligned} & 11.42 \\ & (290) \end{aligned}$	$\begin{gathered} 7.22 \\ (183.5) \end{gathered}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 7.48 \\ (190) \end{gathered}$	$\begin{gathered} \text { 4.1339/4.1325 } \\ (105.000 / 104.965) \end{gathered}$	$\begin{gathered} 4.3307 / 4.3293 \\ (110.000 / 109.965) \end{gathered}$	M10	$\begin{aligned} & 0.51 \\ & \text { (13) } \end{aligned}$	6	$\begin{aligned} & 4.724 \\ & (120) \end{aligned}$	M8	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6	$\begin{aligned} & 4.724 \\ & (120) \end{aligned}$
20	$\begin{aligned} & 13.19 \\ & (335) \end{aligned}$	$\begin{aligned} & 8.74 \\ & (222) \end{aligned}$	$\begin{gathered} 0.35 \\ (9) \end{gathered}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 8.66 \\ & (220) \end{aligned}$	$\begin{gathered} 5.1181 / 5.1165 \\ (130.000 / 129.960) \end{gathered}$	$5.1181 / 5.1165$ $(130.000 / 129.960)$	M10	$\begin{aligned} & 0.59 \\ & (15) \end{aligned}$	6	$\begin{aligned} & 5.906 \\ & (150) \end{aligned}$	M10	$\begin{gathered} 0.53 \\ (13.5) \end{gathered}$	6	$\begin{aligned} & 5.906 \\ & (150) \end{aligned}$

Note: This is a stationary field clutch. The tapped holes "L" in the field are for securing the housing to prevent it from rotating. This can be done with capscrews or with a restraining strap. Do not block ventilation openings when mounting.
Note: All dimensions are nominal unless otherwise noted.

Dimensions

Sizes 0.3 through 40

							Shaft Dimensions					L			
Model	A	B	C	D	E	F	G	H	I	J	K	Thread Size	Depth	No. of Holes	Bolt Circle
POC-0.3	$\begin{aligned} & 4.72 \\ & (120) \end{aligned}$	$\begin{aligned} & 5.79 \\ & (147) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23) \end{aligned}$	$\begin{gathered} 3.43 \\ (87) \end{gathered}$	0.43 (11)	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{aligned} & 0.3937 / 0.3931 \\ & (10.000 / 9.985) \end{aligned}$	$\begin{gathered} 0.1584 / 0.1580 \\ (4.024 / 4.012) \end{gathered}$	0.16 (4)	$\begin{aligned} & 0.10 \\ & (2.5) \end{aligned}$	M5	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	6×2	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POC-0.6	$\begin{aligned} & 5.28 \\ & (134) \end{aligned}$	$\begin{aligned} & 6.10 \\ & (155) \end{aligned}$	$\begin{aligned} & 1.02 \\ & (26) \end{aligned}$	$\begin{aligned} & 3.54 \\ & (90) \end{aligned}$	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (70) \end{aligned}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{gathered} 0.4724 / .4717 \\ (12.000 / 11.9820) \end{gathered}$	$\begin{gathered} 0.1584 / 0.1580 \\ (4.024 / 4.012) \end{gathered}$	0.16 (4)	$\begin{aligned} & 0.10 \\ & (2.5) \end{aligned}$	M5	$\begin{aligned} & 0.43 \\ & (11) \end{aligned}$	6×2	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POC-1.2	$\begin{aligned} & 5.98 \\ & (152) \end{aligned}$	$\begin{aligned} & 7.40 \\ & (188) \end{aligned}$	$\begin{gathered} 1.36 \\ (34.5) \end{gathered}$	$\begin{aligned} & 4.17 \\ & (106) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{gathered} 1.6535 / 1.6526 \\ (42.000 / 41.975) \end{gathered}$	$\begin{gathered} 0.5906 / 0.5898 \\ (15.000 / 14.982) \end{gathered}$	$\begin{gathered} 0.1978 / 0.1973 \\ (5.024 / 5.012) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	0.12 (3)	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6×2	$\begin{gathered} 2.520 \\ (64) \end{gathered}$
POC-2.5	$\begin{aligned} & 7.17 \\ & (182) \end{aligned}$	$\begin{gathered} 8.96 \\ (227.5) \end{gathered}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{gathered} 4.86 \\ (123.5) \end{gathered}$	0.59 (15)	$\begin{gathered} 3.68 \\ (93.5) \end{gathered}$	$\begin{gathered} 2.1654 / 2.1642 \\ (55.000 / 54.970) \end{gathered}$	$\begin{gathered} 0.7874 / 0.7866 \\ (20.000 / 19.979) \end{gathered}$	$\begin{gathered} 0.1978 / 0.1973 \\ (5.024 / 5.012) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	0.12 (3)	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6×2	3.071 (78)
POC-5	$\begin{aligned} & 8.62 \\ & (219) \end{aligned}$	$\begin{aligned} & 11.18 \\ & (284) \end{aligned}$	$\begin{gathered} 2.24 \\ (57) \end{gathered}$	$\begin{aligned} & 5.94 \\ & (151) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23) \end{aligned}$	$\begin{aligned} & 4.13 \\ & (105) \end{aligned}$	$\begin{gathered} 2.9134 / 2.9122 \\ (74.000 / 73.970) \end{gathered}$	$\begin{gathered} 0.9843 / 0.9834 \\ (25.000 / 24.979) \end{gathered}$	$\begin{gathered} 0.2768 / 0.2762 \\ (7.030 / 7.015) \end{gathered}$	$\begin{gathered} 0.28 \\ (7) \end{gathered}$	0.16 (4)	M6	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	6×2	$\begin{aligned} & 3.937 \\ & (100) \end{aligned}$
POC-10	$\begin{aligned} & 11.42 \\ & (290) \end{aligned}$	$\begin{aligned} & 13.70 \\ & (348) \end{aligned}$	2.64 (67)	$\begin{aligned} & 7.56 \\ & (192) \end{aligned}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{aligned} & 5.59 \\ & (142) \end{aligned}$	3.9370/3.9356 (100.000/99.965)	$\begin{gathered} 1.1811 / 1.1803 \\ (30.000 / 29.979) \end{gathered}$	$\begin{gathered} 0.2768 / 0.2762 \\ (7.030 / 7.015) \end{gathered}$	0.28 (7)	0.16 (4)	M10	$\begin{aligned} & 0.71 \\ & (18) \end{aligned}$	6×2	$\begin{aligned} & 5.512 \\ & (140) \end{aligned}$
POC-20	$\begin{aligned} & 13.19 \\ & (335) \end{aligned}$	$\begin{aligned} & 15.04 \\ & (382) \end{aligned}$	2.80 (71)	$\begin{aligned} & 8.50 \\ & (216) \end{aligned}$	$\begin{aligned} & 0.98 \\ & (25) \end{aligned}$	$\begin{gathered} 6.54 \\ (166) \end{gathered}$	$\begin{gathered} 4.3307 / 4.3293 \\ (110.000 / 109.965) \end{gathered}$	$\begin{gathered} 1.3780 / 1.3770 \\ (35.000 / 34.975) \end{gathered}$	$\begin{gathered} 0.3949 / 0.3943 \\ (10.030 / 10.015) \end{gathered}$	0.31 (8)	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	M10	0.71 (18)	6×2	$\begin{aligned} & 5.906 \\ & (150) \end{aligned}$
POC-40	$\begin{aligned} & 15.55 \\ & (395) \\ & \hline \end{aligned}$	$\begin{aligned} & 19.29 \\ & (490) \\ & \hline \end{aligned}$	$\begin{gathered} 3.62 \\ (92) \\ \hline \end{gathered}$	$\begin{aligned} & 10.94 \\ & (278) \end{aligned}$	$\begin{array}{r} 1.30 \\ (33) \\ \hline \end{array}$	$\begin{aligned} & 8.35 \\ & (212) \end{aligned}$	$5.1181 / 5.1165$ $(130.000 / 129.960)$	$1.7717 / 1.7707$ $(45.000 / 44.975)$	$\begin{gathered} 0.4739 / 0.4731 \\ (12.036 / 12.018) \end{gathered}$	0.31 (8)	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	M12	$\begin{aligned} & 0.79 \\ & (20) \\ & \hline \end{aligned}$	8×2	$\begin{aligned} & 7.874 \\ & (200) \end{aligned}$

* Air inlet for optional forced air cooling. Consult factory.

Note: All dimensions are nominal unless otherwise noted.

Dimensions
 Size 80

Specifications inches

Size	Part Number	Torque (lb. ft.)	Drag Torque (lb. ft.)	Maximum Speed (rpm)	Inertia Input ($\mathrm{lb} . \mathrm{ft}^{2}{ }^{2}$)	$\begin{aligned} & \text { Output } \\ & \text { (lb. ft. }{ }^{2} \text {) } \end{aligned}$	Max. Heat Diss. Watts @ Max. RPM	Weight (lbs.)
0.3	5401-270-211	2.1	. 065	1,800	. 0128	. 00477	105	5.5
0.6	5401-270-221	4.3	. 13	1,800	. 0173	. 00570	80	7.9
1.2	5401-270-231	8.6	. 26	1,800	. 0304	. 0104	145	12
2.5	5401-270-241	18	. 54	1,800	. 0973	. 0387	195	22
5	5401-270-251	36	1.1	1,800	. 249	. 114	290	38
10	5401-270-261	72	2.2	1,800	1.04	. 437	460	77
20	5401-270-271	144	4.3	1,800	2.23	1.19	790	128
40	5401-270-281	289	8.7	1,800	5.93	3.08	1,990	220
80	5401-270-291	578	17	1,500	23.5	15.2	3,900	551

Optional Mounting Bracket (for mounting MPB Brakes and MPC Clutches)

inches (mm)											
Model	Fits Size (See Note)	A	B	C	D	E	F	G	H	I	
			0.270	1.750	1.155	0.390	0.280	2.500	0.750	1.500	3.000
MPB-2B	MB2/MC2	(6.9)	(44.5)	(29.3)	(9.9)	(7.1)	(63.5)	(19.1)	(38.1)	(76.2)	
		MB3/MC3,	0.270	2.500	1.155	0.390	0.280	3.500	1.125	2.000	4.000
MPB-15B	MB4/MC4	(6.9)	(63.5)	(29.3)	(9.9)	(7.1)	(88.9)	(28.6)	(50.8)	(101.6)	
		0.270	4.875	1.155	0.390	0.280	6.000	1.625	3.500	6.000	
MPB-70B	MB5/MC5	(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(152.4)	(41.3)	(88.9)	(152.4)	
MPB-120B	MB5.5/MC5.5	0.270	4.875	1.155	0.390	0.280	6.000	1.625	3.500	6.250	
		(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(152.4)	(41.3)	(88.9)	(158.8)	
MPB-240B	MB6/MC6	0.270	4.875	1.155	0.390	0.280	6.500	2.441	4.000	7.500	
		(6.9)	(123.8)	(29.3)	(9.9)	(7.1)	(165.1)	(62.0)	(101.6)	(190.5)	

Note: All dimensions are nominal unless otherwise noted.
All MPC Series clutches require 2 mounting brackets.
MPB Series brakes require 1 mounting bracket.

Optional Torque Arm (for shaft mounting PRB-H and PRB-HF Brakes)

inches (mm)				
Model	Part Number	A inches $(\mathbf{m m})$	B inches (mm)	C inches (mm)
PRB-1.2H	$5401-101-001$	9.03	1.50	0.31
		(229.4)	(38.1)	(7.9)
PRB-2.5H	$5401-101-001$	9.03	1.50	0.31
		(229.4)	(38.1)	(7.9)
PRB-5H	$5401-101-002$	11.19	1.50	0.38
		(284.2)	(38.1)	(9.5)
PRB-10H	$5401-101-002$	11.19	1.50	0.38
		(284.2)	(38.1)	(9.5)
PRB-20H	$5401-101-003$	19.31	2.38	0.38
		(490.5)	(60.3)	(9.5)

Note: All dimensions are nominal unless otherwise noted.

Overhung Load

When an overhung load（side load）is applied to the shaft，verify that this load does not exceed the maximum allowable． Operating speed and where the load is applied to the shaft（see Dimension A， below）must be known．For speed，deter－ mine the speed coefficient from the coeffi－ cient table．Also，determine the allowable overhung load from the chart based on Dimension A．Multiply the load from the chart times the speed coefficient to deter－ mine the allowable load for the application．

Pulley or Sprocket Load

For most applications，the overhung load is caused by pulleys or sprockets．The smaller the pitch diameter（PD）of the pul－ ley or sprocket，the higher the belt or chain tension，and，therefore，the greater the overhung load．To determine the mini－ mum pulley diameter for the application， use the following equation：
Minimum PD（in．）$=\frac{24 \text { TK }}{\mathrm{CR}}$
$\mathrm{T}=$ Torque（lb．ft．）This is the torque actually being transmitted，not necessarily the maximum torque capacity of the brake．
$K=$ Safety factor for the tension in type of drive．Use 1.2 to 1.5 for sprock－ ets， 2 to 4 for belts．
$C=$ Speed coefficient from table．
$R=$ Radial load allowable at 1，000 RPM． （The allowable radial loads for vari－ ous locations on the shaft are given in the Allowable Load chart．）
Example：Determine the minimum sprocket diameter that can be used on a PRS－5S．Dimension A is 1.1 inches，the torque requirement is $20 \mathrm{lb} . \mathrm{ft}$ ．and the speed is 600 RPM．

$$
\begin{aligned}
\text { Minimum PD (in.) } & =\frac{24 \times 20 \times 1.5}{1.2 \times 214} \\
& =2.8 \text { inch minimum PD }
\end{aligned}
$$

Overhung Load

Note：Shaft extensions are not recommended．

Allowable Overhung Load

Type	$\begin{gathered} \mathrm{A} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \text { (Ibs.) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} R \\ \text { (Ibs.) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \text { (Ibs.) } \end{gathered}$
MPB2/MPC2	. 40	5	. 50	4	. 80	2.5
MPB15/MPC15	. 40	25	. 50	20	1	10
MPB70/MPC70	. 40	37.5	. 50	30	1.25	12
MPB120/MPC120	. 50	30	1	15	1.5	10
MPB240	. 50	50	1	25	1.5	16
POC/POB-0.3	. 40	30	. 50	28	. 90	22
POC/POB-0.6	. 40	45	. 50	42	1.0	29
POC/POB-1.2	. 40	52	. 70	43	1.4	31
POC/POB-2.5	. 40	88	. 90	67	1.7	48
PTB-2.5BL3	. 40	125	. 90	104	1.7	82
POC/POB-5	. 40	204	1.1	136	2.2	93
PTB-5BL3	. 40	204	1.1	136	2.2	93
POC/POB-10	. 40	313	1.3	235	2.6	159
PTB-10BL3	. 40	433	1.3	368	2.6	282
POC/POB-20	. 40	379	1.4	265	2.8	198
PTB-20BL3	. 40	379	1.4	265	2.8	198
POC/POB-40	. 40	581	1.8	432	3.6	324
POC/POB-80	. 40	860	2.2	648	4.3	498

Note: This table is based on $1,000 \mathrm{rpm}$ and a bearing life of 6,000 hours. Also, this table assumes that no thrust load is applied.

Speed Coefficient

Speed (rpm)	Speed Coefficient		Speed (rpm)	Speed Coefficient
50	2.74		1,000	1.00
100	2.18		1,200	0.95
200	1.72		1,400	0.89
400	1.37		1,600	0.86
600	1.20		1,800	0.82
800	1.09		2,000	0.80

884

 Pneumatic Brakes

 Pneumatic Brakes}

InDUSTRIF

Mistral Brakes

Modular design permits variable tensioning capacities!

Wichita Clutch's Mistral pneumatic tension brakes are ideally suited to the needs of the corrugating market for which it was originally designed. It is also a versatile product which is finding favor in additional tensioning applications. Wichita Clutch designers and engineers consulted extensively with mill roll stand manufacturers and users to offer a tension brake ideally suited to the needs of this particular market. The result is a compact, high performance, versatile brake capable of handling the tensioning needs of the latest machine designs, as well as existing equipment. The Mistral paves the way for increasing line speeds by 5.4 feet/sec. from 810 feet/min. (or slower) to 1,140 feet/min.

Varying number of actuators provide optimum tension control

Each brake may be specified with a varying number of pneumatic actuators, allowing precise selection of brake torque capacity for optimum tension control.

Compact Design

Mistral brakes are compact at only $11.6^{\prime \prime}$ or $16.1^{\prime \prime}$ in diameter. Their size facilitates the pickup of small, part reels

used in short batch runs. For automatic reel loading machines, Mistral offers optional infrared and speed sensor installation within the brake. And their modern, industrial styling enhances the appearance of any machine on which they are used.
Easy Access with Removable Cover Panel

By removing just three cap screws, the Mistral's front cover can be detached for easy and fast access to internal parts. Cover removal automatically disconnects both air and electricity.

Performance Curve

Mounting Ease

Three bolts mount the brake to the arm of the mill roll stand or machine frame and an optional pilot location makes fitting to both new and existing machines a simple operation.

Wear Indicator

A brake wear indicator, which is conveniently located for easy visual inspection, means no down time to check remaining friction material life.

Easy Connection

Air and electrical connections are easily accessible for fast, simple installation and maintenance.

Safety

Mistral's integral guarding eliminates the cost and effort of installing external guards. Operator safety is further enhanced by automatic air and electric disconnects when the front cover is removed.

Integral Cooling
A rugged, high performance, low energy usage fan is housed within the brake for high heat dissipation - a must for increased productivity through controlled tension at many roll speeds.

Fan and Connection Data

Model	Fan Voltages	Fan Power	Electric	Pneum.
200	220VAC $50 / 60 \mathrm{~Hz}$		M16	$1 / 8 \mathrm{BSP}$
	110VAC $50 / 60 \mathrm{~Hz}$	20 W	PG9	$1 / 8 \mathrm{BSP}$
	24 VDC		$3 / 8 \mathrm{NPT}$	$1 / 8 \mathrm{NPT}$
280	$220 V A C 50 / 60 \mathrm{~Hz}$		M 16	$1 / 8 \mathrm{BSP}$
	$110 V A C 50 / 60 \mathrm{~Hz}$	25 W	$\mathrm{PG9}$	$1 / 8 \mathrm{BSP}$
	$24 V D C$		$3 / 8 \mathrm{NPT}$	$1 / 8 \mathrm{NPT}$

Corrugating Press Installation

Pneumatic Brakes

Mistral Brakes

Specifications

Model	Dynamic Slipping Torque Capacity				Heat Transfer Capacity with fan				Maximum Speed	Inertia of Rotating Parts		Weight				Fan Power Rating
	Air Pressure (Ib.in.) (Nm)				Continuous :30 On/:30 Off Operation Operation					Wr ${ }^{2}$	$\mathrm{J}=\mathrm{mr}^{2}$	Total	rake	Rotating	Parts	
Mistral	$\begin{aligned} & \min * \\ & 3 \mathrm{psi} \\ & \hline \end{aligned}$	max.	$\begin{gathered} \min * \\ \text { 0.2 BAR } \end{gathered}$	$\begin{gathered} \text { max. } \\ 5.5 \mathrm{BAR} \end{gathered}$	(hp)	(kW)	(hp)	(kW)	(rev./min.)	(lb.ft. ${ }^{\text {a }}$)	(kgm^{2})	(lb.)	(kg)	(lb.)	(kg)	(W)
200/2/LC	62	1770	7	200	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
200/2	97	2655	11	300	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
200/4/LC	124	3540	14	400	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
200/4	195	5310	22	600	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
200/6/LC	195	5310	22	600	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
200/6	292	7965	33	900	3.2	2.4	3.5	2.6	2860	0.40	0.017	77	35	9.92	4.5	20
280/3/LC	133	3540	14	400	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25
280/3	199	5310	21	600	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25
280/6/LC	265	7080	28	800	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25
280/6	399	10620	42	1200	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25
280/9/LC	399	10620	42	1200	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25
280/9	597	15930	63	1800	6.4	4.8	7	5.2	2090	1.80	0.076	110	50	20.72	9.4	25

[^9]
Pneumatic Brakes

Mistral Brakes

Dimensions

inches (mm)

Model	A	B (H.C.)	F	G	H	J	K (DEG)	\mathbf{L}	M	N	P
200	11.61	10.236	.24	$1 / 2$.98	1.97	40°	7.01	N/A	2.76	7.19
	(295)	(260)	(6)	$($ M12 $)$	(25)	(50)	$\left(40^{\circ}\right)$	(178)	$(\mathrm{N} / \mathrm{A})$	(70)	(182.5)
280	16.14	13.976	0	$5 / 8$	1.18	2.36	20°	7.56	0.37	3.15	9.47
	(410)	(355)	0	$($ M16 $)$	(30)	(60)	$\left(20^{\circ}\right)$	(192)	(9.5)	(80)	(240.5)

Model	Mounting Pilot	Mounting Bolts Qty. and Size
200	$\begin{gathered} \text { Dim. "C" } \\ 8.661+.003 /-.000 \\ (220+.08 /-.00) \end{gathered}$	$\begin{gathered} 3 @ 1 / 2-13 \text { UNC } \\ (3 @ \text { M12 x 1-3/4) } \end{gathered}$
280	$\begin{gathered} \text { Dim. "D" } \\ 6.890+.003 /-.000 \\ (175+.08 /-.00) \end{gathered}$	$\begin{gathered} 3 \text { @ 5/8-11 UNC } \\ (3 @ \text { M16 x 2) } \end{gathered}$

$\left.\begin{array}{lcccc}\hline \text { Actuator/Inlet } & & \begin{array}{c}\text { No. of } \\ \text { Actuators }\end{array} \\ \text { Model } & \begin{array}{c}\text { No. of } \\ \text { Actuators }\end{array} & \begin{array}{c}\text { No. of } \\ \text { Air Inlets }\end{array} & \begin{array}{c}\text { Per Air Inlets } \\ \text { AA }\end{array} \\ \hline \mathbf{B B}\end{array}\right]$

Totally Enclosed with a Wide Range of Torque Capacities

Magnum series unwind tension brakes offer high performance in a compact, easy to install package. Air vents and an impeller-type disk are tuned to achieve highly efficient air flow. Heat dissipation is further enhanced by the use of an integral fan (optional). Four sizes are available with torque capacities from 17 $\mathrm{lb} . \mathrm{in}$. through 14, 160 lb .in.

Totally enclosed. No guard required.

Hinged cover for easy access

Quick replacement friction pads

Specifications

Model No.	Dynamic Slipping Torque Cap. Ib.in. ${ }^{1}$		Brake	HP He 50 rpm	Heat T ontinuous Transfer 100 rpm	ansfer Cap Operation Cap. Force 200 rpm	city for HP^{2} d Cooled at 500 rpm	Maximum Speed (rpm) Medium High Speed Speed brake brake disc disc (rpm) (rpm)		Inertia of brake disc + hub (Ib.ft. ${ }^{2}$)	Total Brake (lb.)	ight Brake disc + Hub (lb.)
260/1LC	17	440	Mag.	1.3	1.5	1.9	2.9	25304427		. 74	31	13.7
260/1	26	660										
260/2LC	43	880										
260/2	60	1320										
260/3LC	60	1320										
260/3	85	1980	Mag.	1.7	2.1	2.8	4.0					
260/4LC	85	1760	Plus	Fan	Fan	Fan	Fan					
260/4	113	2640										
340/1LC	35	687	Mag.	2.3	2.7	3.3	4.7					
340/1	43	1030										
340/2LC	70	1373	Mag.	1.1	1.3	1.6	2.6			\cdots		
340/2	86	2060	Thin	1.1	1.3	1.6	2.6			$1>$		
340/3LC	95	2060										
340/3	129	3090	Mag. Thin	$\begin{aligned} & 2.4 \\ & \text { Fan } \end{aligned}$	$\begin{aligned} & 2.5 \\ & \text { Fan } \end{aligned}$	Fan	$\begin{aligned} & 3.1 \\ & \text { Fan } \end{aligned}$					
340/4LC	129	2748							3570			
340/4	172	4120	Mag. B	3.6	4.0	4.8	5.6	2040	3570	2.4	45	23
340/5LC	163	3435		Fan	Fan	Fan	Fan					
340/5	215	5150										
340/6LC	198	4120	Mag.	3.9	4.3	5	5.7					
340/6	258	6180	Plus	Fan	Fan	Fan	Fan					
400/2LC	86	1774										
400/2	113	2660	Mag.	3.5	4.0	5.2	8.8					
400/3LC	129	2660			,							
400/3	172	3990	Mag.B	4.9	5.7		8.8					
400/4LC	172	3548	Mag.B	Fan	Fan	Fan	Fan					
400/4	225	5320		Fan								
400/5LC	215	4435										
400/5	286	6650	Mag.	$\begin{aligned} & 6.0 \\ & \text { Fan } \end{aligned}$	7.0	8.4	9.4					
400/6LC	252	5322	Plus	Fan	Fan	Fan	Fan	1712	2996	5.7	71	41
400/6	238	7980										
400/7LC	285	6210										
400/7	400	9310										
400/8LC	338	7096										
400/8	451	10640	Mag.	4.7	6.0	8.7	14.7					
500/2LC	113	2360										
500/2	146	3540	Mag.B	10.0	11.4	12.6	14.7					
500/3LC	172	3540		Fan	Fan	Fan	Fan					
500/3	225	5310										
500/4LC	225	4720			12.0							
500/4 500/5LC	304 286	7080 5900	Plus	Fan	Fan	Fan	Fan					
500/5	382	8850										
500/6LC	338	7080						1308	2289	17	127	60
500/6	451	10620										
500/7LC	400	8260										
500/7	530	12390										
500/8LC	451	9440										
500/8	608	14160										

Notes

1. The dynamic slipping torque range for a given brake model can be changed by switching the actuators in or out by means of the hand slide valves provided e.g. a 340/3 to a 340/2 or a 340/1.
2. The heat transfer ratings in the above chart assume a forward rotation of the brake disc. For reverse rotation, the heat ratings of models Magnum 260 and Magnum 340 should be reduced by 15%. If in doubt, please contact your Wichita Clutch engineer.

* Lower minimum torques possible with appropriate control.

Magnum Brakes

Dimensions

Magnum

inches (mm)

Certified prints showing exact dimensions are sent with every order acknowledgement, and these should always be obtained before finalizing any design detail.

Pneumatic Brakes

Magnum Brakes

Magnum B

Magnum Plus

The Wichita Clutch Air Disc is a pneumatic unwind brake for those heavy-duty applications where high thermal capacity and/or high tension requirements exceed the range of electrically actuated products.

The Wichita Clutch Air Disc pneumatic brake offers effective web control under heavy working conditions through innovative engineering features such as low inertia and high thermal conductivity rotor discs, which allow high work loads and still afford control as the roll reaches core.

Unique actuators float freely to compensate for run-out and less than ideal roll conditions. Simple pad replacement makes maintenance a breeze - especially when factoring in the long life of the components.

Analog

 Tension Control System
Selection

Selecting any tension braking device requires consideration of many interrelated factors. By using the data sheet on pages 16-28, the correct sizing information can be organized.
Provisions for selection calculations are also made on this form.

If you need assistance, please copy this form and forward it to Wichita Clutch. Your local Wichita Clutch market representative or your local Wichita Clutch Authorized Distributor can also provide selection assistance.

Torque Characteristics

Torque produced by the Air Disc is proportional to the air pressure applied. Refer to the chart at the right to see the relationship of air pressure to torque.

Rotor Inertia and Weights

Brake	Rotor and Hub* Total Size	Total Brake Inertia
$10^{\prime \prime}$	28.3	2.6
$13^{\prime \prime}$	53.2	6.5
$16^{\prime \prime}$	81.0	23.7

[^10]

NOTE: Torque is proportional to air pressure as shown above.

Table 2. Thermal Horsepower

Pneumatic Brakes

AD Series - Air Disc ${ }^{\circledR}$ Brakes

Table 3. Capacities

Model No.	Dia. of Friction Plates	No. of Actuators	Approx. Total Weight (lbs.)	Max Speed* (RPM)	Rated Torque At 75 P.S.I. Air Pressure (lb.in./lb.ft.)
101	10"	1	50	2,100	700/58
1017	10"	1	50		1,470/120
102	10"	2	53	2,100	1,400/117
102T	10"	2	53		2,940/245
103	10"	3	56	2,100	2,100/175
$103 T$	10"	3	56		4,410/365
104	10"	4	59	2,100	2,800/233
$104 T$	10"	4	59		5,880/490
105	10"	5	62	2,100	3,500/292
$105 T$	10"	5	62		7,350/610
131	13"	1	78	1,600	950/79
1317	13 "	1	78		1,995/165
132	13"	2	81	1,600	1,900/158
132T	13 "	2	81		3,990/330
133	13"	3	84	1,600	2,850/238
$133 T$	13 "	3	84		5,985/495
134	13 "	4	87		3,800/317
134T	13"	4	87		7,980/665
135	13"	5	90	1,600	4,750/396
$135 T$	13 "	5	90		9,975/830
136	13"	6	93	1,600	5,700/475
$136 T$	13 "	6	93		11,970/995
161	16"	1	111	1,300	1,275/106
$161 T$	16"	1	111		2,675/220
162	16"	2	114	1,300	2,550/213
162T	$16^{\prime \prime}$	2	114		5,355/445
163	$16^{\prime \prime}$	3	117	1,300	3,825/319
$163 T$	$16^{\prime \prime}$	3	117		8,030/665
164	$16^{\prime \prime}$	4	120	1,300	5,100/425
164T	$16^{\prime \prime}$	4	120		10,710/890
165	16"	5	123	1,300	6,375/531
$165 T$	16"	5	123		13,385/1,115
166	$16^{\prime \prime}$	6	126	1,300	7,650/638
166 T	$16^{\prime \prime}$	6	126		16,065/1,335
167	$16^{\prime \prime}$	7	129	1,300	8,926/744
167 T	$16^{\prime \prime}$	7	129		18,745/1,560
168	16"	8	132	1,300	10,200/850
168T	$16^{\prime \prime}$	8	132		21,420/1,785

[^11]
Pneumatic Brakes

Dimensions

Model No.	A	B	C	D	E	F	G
$101-105$	13.00	.75	6.25	1.59	.88	2.72	6.00
$131-136$	14.75	.75	6.25	1.59	.88	2.72	8.00
$161-168$	17.50	1.25	6.25	2.09	.88	2.72	10.50

H	Max. Bore Rect. Key I	J	K	
	Max.	Min.		
16.60	1.875	1.0	$5 / 8 "-11$	5
18.00	3.000	1.0	$5 / 8-11$	6
21.50	4.500	1.0	$5 / 8-11$	8

$J=$ Size of Mounting Bolts
$\mathrm{K}=$ Number of Mounting Bolts
Guard and Hose Ki'

Size	Basic Unit	Guard Kit	Hose Kit
101	$7-810-100-100-5$	$4-610-021-009-3$	$8-610-070-007-1$
102	$7-810-200-100-5$	$4-610-021-009-3$	$8-610-070-007-2$
103	$7-810-300-100-5$	$4-610-021-009-3$	$8-610-070-007-3$
104	$7-810-400-100-5$	$4-610-021-009-3$	$8-610-070-007-4$
105	$7-810-500-100-5$	$4-610-021-009-3$	$8-610-070-007-5$
131	$7-813-100-100-5$	$4-613-021-010-3$	$8-613-070-007-1$
132	$7-813-200-100-5$	$4-613-021-010-3$	$8-613-070-007-2$
133	$7-813-300-100-5$	$4-613-021-010-3$	$8-613-070-007-3$
134	$7-813-400-100-5$	$4-613-021-010-3$	$8-613-070-007-4$
135	$7-813-500-100-5$	$4-613-021-010-3$	$8-613-070-007-5$

Size	Basic Unit	Guard Kit	Hose Kit
136	$7-813-600-100-5$	$4-613-021-010-3$	$8-613-070-007-6$
161	$7-816-100-100-5$	$4-616-021-007-3$	$8-616-070-007-1$
162	$7-816-200-100-5$	$4-616-021-007-3$	$8-616-070-007-2$
163	$7-816-300-100-5$	$4-616-021-007-3$	$8-616-070-007-3$
164	$7-816-400-100-5$	$4-616-021-007-3$	$8-616-070-007-4$
165	$7-816-500-100-5$	$4-616-021-007-3$	$8-616-070-007-5$
166	$7-816-600-100-5$	$4-616-021-007-3$	$8-616-070-007-6$
167	$7-816-700-100-5$	$4-616-021-007-3$	$8-616-070-007-7$
168	$7-816-800-100-5$	$4-616-021-007-3$	$8-616-070-007-8$

Notes:

1. Wichita Clutch does not recommend using a hose kit without a guard kit.
2. The guard kit uses the bolt spacer kit that comes with the basic unit kits for mounting. Using the 10 "guard with a unit with fewer than 3
actuators requires one guard bolt spacer kit. $13^{\prime \prime} \& 16^{\prime \prime}$ guard kits require two guard bolt spacer kits when utilizing fewer than 4 and 6 actuators, respectively. With 4 and 6 actuators, only one guard bolt spacer kit is required. No guard bolt spacer kit is required with 5 or 7 actuators.

 +18 DIST. AUTORIZADO QRO (442) 1957260 ventas@industrialmagza.com
 Pneumatic Brakes

AD Series - Air Disc ${ }^{\circledR}$ Brakes
Component Parts

Parts List

Item Description		10" Rotor	13" Rotor	16" Rotor
Basic Brake	1. Friction Plate	4-610-001-001-1	4-613-001-001-1	4-616-001-001-1
	2. Hub	4-610-001-002-3	4-613-001-000-3	4-616-001-000-3
	3. HHCS $3 / 8 \times 5$ "	2-173-037-050-0	2-173-037-050-0	2-173-037-050-0
	4. Nut $3 / 8$	2-112-037-012-0	2-112-037-012-0	2-112-037-012-0
	5. Bolt/Spacer Kit	8-610-010-001-0	8-610-010-001-0	8-610-010-001-0
	5.a Short Spacer	4-616-015-000-3	4-616-015-000-3	4-616-015-000-3
	5.b Spacer	4-613-015-002-3	4-613-015-002-3	4-613-015-002-3
	5.c HHCS $5 / 8 \times 7$ "	2-173-062-070-0	2-173-062-070-0	2-173-062-070-0
	6. Airtube Carrier Assembly	8-610-002-001-5	8-613-002-003-5	8-616-002-001-5
	6.a Airtube Carrier	4-610-002-001-5	4-613-002-003-5	4-616-002-001-5
	6.b Airtube Carrier Cap	4-613-002-004-5	4-613-002-004-5	4-613-002-004-5
	6.c Spring	4-613-033-000-4	4-613-033-000-4	4-613-033-000-4
	6.d Airtube Assembly	8-613-020-008-0	8-613-020-008-0	8-613-020-008-0
	6.e SHCS $1 / 4 \times 3 / 4{ }^{\prime \prime}$	2-177-025-006-0	2-177-025-006-0	2-177-025-006-0
	6.f Friction Puck Assembly, STD	8-613-007-000-0	8-613-007-000-0	8-613-007-000-0
	Friction Pad Assembly, HICO	8-613-507-000-0	-	-
	6.g Spring Pin	4-613-033-001-4	4-613-033-001-4	4-613-033-001-4
Guard Kit	7. Guard	4-610-021-009-3	4-613-021-010-3	4-616-021-007-3
	8. Guard Bolt/Spacer Kit	8-610-010-002-0	8-610-010-002-0	8-610-010-002-0
	8.a HHCS $5 / 8 \times 21 / 4$	2-173-062-022-0	2-173-062-022-0	2-173-062-022-0
	8.b Short Spacer	4-616-015-000-3	4-616-015-000-3	4-616-015-000-3
Hose Kit	9. Coupling $1 / 8 \times 1 / 8$	4-613-072-006-0	4-613-072-006-0	4-613-072-006-0
	10. Elbow $1 / 8 \times 10-32$	4-613-072-007-0	4-613-072-007-0	4-613-072-007-0
	11. Tee $10-32 \times 10-32 \times 1 / 8$	4-613-072-008-0	4-613-072-008-0	4-613-072-008-0
	12. Teflon Tubing	4-610-074-001-0	4-610-074-001-0	4-610-074-001-0
	13. 10-32 Hex Plug	4-613-072-004-0	4-613-072-004-0	4-613-072-004-0
	14. 3-Way Switch	4-613-071-002-0	4-613-071-002-0	4-613-071-002-0
	15. 10-32 Straight Filting	4-613-072-002-0	4-613-072-002-0	4-613-072-002-0
	16. Washer	4-137-050-111-0	4-137-050-111-0	4-137-050-111-0
	17. Extension 1/8	2-308-001-001-0	2-308-001-001-0	2-308-001-001-0

Pneumatic Brakes

ModEvo Tension Brakes

Brake Discs and Cooling

The ModEvo brake disc was developed at the Bedford, UK factory using Finite Element Analysis techniques to ensure maximum strength with minimum weight. The design is optimized to make best use of the cooling air available at slow speeds, and being bidirectional, it achieves high heat dissipation capacity in either rotational direction, unlike some other brakes. An optional electric cooling fan is available where space is limited or more extreme heat handling is required.

Available in five sizes: 250 mm , $300 \mathrm{~mm}, 350 \mathrm{~mm}, 400 \mathrm{~mm}$ and 450 mm diameters, all discs are the same thickness and use the same brake modules and actuators. Each disc can be specified with a minimum of a single module, up to the maximum number of modules that can be fitted around the disc. This allows torque-
handling capabilities ranging from a maximum of $659 \mathrm{lb} . \mathrm{ft}$. for the 250 mm disc, up to $3181 \mathrm{lb} . \mathrm{ft}$. for the 450 mm disc.

NOTE: If using a high speed ductile iron disc the catalog heat rating should be reduced by 10% as the thermal conductivity of the ductile iron is less than grey cast iron.

Maximum Rotational Speed		
Disc Diameter mm	Standard Speed rev./min.	High Speed rev./min.
250	2,250	3,375
300	1,900	2,850
350	1,650	2,475
400	1,450	2,175
450	1,250	1,875

Actuator Options

Newly developed rolling diaphragm actuators are used in ModEvo, producing more force than previous designs to allow higher torque ratings. However, the sensitivity for which rolling diaphragms are favored is not compromised. Three actuator options are available, offering clamping forces of $100 \%, 60 \%$ or 25%.

The finned, die cast aluminum brake module is common to all brake disc diameters. Each module houses two pairs of actuators, and allows friction pads to be changed quickly without dismantling the module.

25\%

Friction Pad Options

To provide maximum flexibility when selecting the required torque/tension range for an application, two pad options are available, with different coefficients of frictions: Low ($\mu=0.20$), color-coded yellow; Standard ($\mu=0.35$), color-coded red. Pad types may be mixed within a single brake assembly to provide an exact match to the machine requirements.

Optional Guard

The optional guard has a plastic front with 'ModEvo' molded in and a metal ventilated perimeter.

Mounting is by four brackets on customer's machine frame.

The center of the guard is designed such that it may be cut-out by customer to suit the diameter of the shaft in through-shaft installations.

ModEvo 300/8 with Fan

Brake Size (fan Diameter)	$\mathbf{2 4 v}$ DC	115v AC	230v AC
$250(150 \mathrm{~mm})$	Yes	Yes	Yes
$300(150 \mathrm{~mm})$	Yes	Yes	Yes
$350(150 \mathrm{~mm})$	Yes	Yes	Yes
$400(150 \mathrm{~mm})$	Yes	Yes	Yes
$(200 \mathrm{~mm})$	not available	Yes	Yes
$450(150 \mathrm{~mm})$	Yes	Yes	Yes
$(200 \mathrm{~mm})$	not available	Yes	Yes
$(250 \mathrm{~mm})$	not available	Yes	Yes

Pneumatic Brakes

ModEvo Model 250

Model	Minimum Torques					
	$\begin{gathered} \text { Minimum (3 PSI) (0.2 Bars })^{1} \\ \text { lb.ft. }(\mathrm{Nm}) \end{gathered}$					
	L^{2}	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$
	25\% Actuators		60\% Actuators		100 \% Actuators	
250/1	$\begin{gathered} 0.6 \\ (0.8) \end{gathered}$	$\begin{aligned} & 0.93 \\ & (1.3) \end{aligned}$	$\begin{gathered} 1.3 \\ (1.8) \end{gathered}$	$\begin{aligned} & 2.2 \\ & (3) \end{aligned}$	2.2 (3)	3.7 (5)
250/2*	$\begin{gathered} 1.1 \\ (1.5) \end{gathered}$	$\begin{gathered} 1.9 \\ (2.5) \end{gathered}$	$\begin{gathered} 2.6 \\ (3.6) \end{gathered}$	$\begin{aligned} & 4.4 \\ & (6) \end{aligned}$	4.4 (6)	$\begin{gathered} 7.4 \\ (10) \end{gathered}$
250/4*	2.2 (3)	$\begin{aligned} & 3.7 \\ & (5) \end{aligned}$	$\begin{gathered} 5.3 \\ (7.2) \end{gathered}$	$\begin{aligned} & 8.8 \\ & (12) \end{aligned}$	$\begin{gathered} 8.8 \\ (12) \end{gathered}$	$\begin{aligned} & 14.7 \\ & (20) \end{aligned}$
250/6*	$\begin{gathered} 3.3 \\ (4.5) \end{gathered}$	$\begin{gathered} 5.5 \\ (7.5) \end{gathered}$	$\begin{gathered} 7.9 \\ (10.8) \end{gathered}$	$\begin{aligned} & 13.2 \\ & (18) \end{aligned}$	$\begin{aligned} & 13.2 \\ & (18) \end{aligned}$	$\begin{gathered} 22 \\ (30) \end{gathered}$

Maximum Torques
Maximum (87 PSI) (6 Bars)

lb.ft.(Nm)						
$250 / 1$	15.8	27.5	37.8	66	63	110
	(21.3)	(37.3)	(51)	(89.4)	(85)	(149)
$250 / 2^{*}$	31.3	53.25	75	127.8	125	213
	(42.5)	(72.3)	(102)	(173.4)	(170)	(289)
$250 / 4^{*}$	62.8	110	150.6	264	251	440
	(85)	(149)	(204)	(357.6)	(340)	(596)
$250 / 6^{*}$	94	164.8	225.6	395.4	376	659
	(127.5)	(223.5)	(306)	(536.4)	(510)	(894)

* For single actuator operation torques for 250/1 are applicable.

Model ${ }^{6}$	Speed ${ }^{4}$ Max.	Heat Capacity for Effective Cooling Speeds							Inertia Rotating Parts	Weight	
		HP(kW) ${ }^{5}$							$\begin{gathered} \mathrm{lb.ft}^{2} \\ \left(\mathrm{kbm}^{2}\right) \end{gathered}$	lbs.(kg)	
	RPM	$\begin{gathered} 50 \\ \text { RPM } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { RPM } \end{aligned}$	$\begin{gathered} 200 \\ \text { RPM } \end{gathered}$	$\begin{aligned} & 300 \\ & \text { RPM } \end{aligned}$	$\begin{aligned} & 400 \\ & \text { RPM } \end{aligned}$	$\begin{gathered} 500 \\ \text { RPM } \end{gathered}$	$\begin{aligned} & \hline 600 \\ & \text { RPM } \end{aligned}$		Total	Rotating
250/1	2250	$\begin{aligned} & 1.61 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 1.88 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 2.55 \\ & (1.9) \end{aligned}$	hout F	$\begin{aligned} & 3.62 \\ & (2.7) \end{aligned}$	$\begin{aligned} & 4.02 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 4.29 \\ & (3.2) \end{aligned}$	$\begin{gathered} 1.424 \\ (0.060) \end{gathered}$	$\begin{gathered} 27.337 \\ (12.4) \end{gathered}$	$\begin{gathered} 19.180 \\ (8.7) \end{gathered}$
250/2	2250				(2.4)					$\begin{aligned} & 29.101 \\ & (13.2) \end{aligned}$	
250/4	2250	$\begin{aligned} & 4.56 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 4.69 \\ & (3.5) \end{aligned}$	With Electric Cooling Fan			$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$		38.801	
$250 / 4$ $250 / 6$	2250 2250			$\begin{aligned} & 5.10 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$				$\begin{aligned} & (17.6) \\ & 48.772 \\ & (22.1) \\ & \hline \end{aligned}$	

${ }^{1}$ Minimum torques were calculated using a multiplier of 0.6 for LC times Standard.
${ }^{2}$ LC - Low Coefficient based on 0.2 Coefficient of friction.
${ }^{3}$ Standard based on 0.35 Coefficient of friction.
${ }^{4}$ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.
${ }^{5}$ Limit LC to 70% of heat capacity.
${ }^{6}$ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Model	Minimum Torques					
	Minimum (3 PSI) (0.2 Bars) ${ }^{1}$ lb.ft.(Nm)					
	LC^{2}	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$
	25\% Actuators		60\% Actuators		100 \% Actuators	
300/1	$\begin{gathered} 0.7 \\ (0.9) \end{gathered}$	$\begin{gathered} 1.1 \\ (1.5) \end{gathered}$	$\begin{gathered} \hline 1.6 \\ (2.2) \end{gathered}$	$\begin{gathered} \hline 2.6 \\ (3.6) \end{gathered}$	$\begin{gathered} \hline 2.6 \\ (3.6) \end{gathered}$	5.2 (7)
300/2*	$\begin{gathered} 1.6 \\ (2.1) \end{gathered}$	$\begin{gathered} 2.6 \\ (3.5) \end{gathered}$	3.7 (5)	$\begin{gathered} 6.2 \\ (8.4) \end{gathered}$	$\begin{gathered} 6.2 \\ (8.4) \end{gathered}$	$\begin{aligned} & 10.3 \\ & (14) \end{aligned}$
300/4*	$\begin{gathered} 3.1 \\ (4.2) \end{gathered}$	5.2 (7)	$\begin{gathered} 7.4 \\ (10.1) \end{gathered}$	$\begin{gathered} 12.4 \\ (16.8) \end{gathered}$	$\begin{gathered} 12.4 \\ (16.8) \end{gathered}$	20.6 (28)
300/6*	$\begin{gathered} 4.5 \\ (6.3) \end{gathered}$	$\begin{gathered} 7.7 \\ (10.5) \end{gathered}$	$\begin{gathered} 11.1 \\ (15.1) \end{gathered}$	$\begin{gathered} 18.5 \\ (25.2) \end{gathered}$	$\begin{gathered} 18.5 \\ (25.2) \end{gathered}$	$\begin{aligned} & 30.9 \\ & (42) \end{aligned}$
300/8*	$\begin{gathered} 6.2 \\ (8.4) \\ \hline \end{gathered}$	$\begin{aligned} & 10.3 \\ & (14) \end{aligned}$	$\begin{gathered} 14.9 \\ (20.2) \end{gathered}$	$\begin{gathered} 24.8 \\ (33.6) \\ \hline \end{gathered}$	$\begin{gathered} 24.8 \\ (33.6) \\ \hline \end{gathered}$	$\begin{aligned} & 41.3 \\ & (56) \end{aligned}$
	Maximum Torques Maximum (87 PSI) (6 Bars) lb.ft.(Nm)					
300/1	19.8 (27)	$\begin{gathered} 34.9 \\ (47.3) \end{gathered}$	$\begin{gathered} 47.4 \\ (64.8) \end{gathered}$	$\begin{gathered} \hline 83.6 \\ (113.4) \end{gathered}$	$\begin{gathered} \hline 79 \\ (108) \end{gathered}$	$\begin{aligned} & 139.4 \\ & (189) \end{aligned}$
300/2*	$\begin{aligned} & 39.8 \\ & (54) \end{aligned}$	$\begin{gathered} 69.7 \\ (94.5) \end{gathered}$	$\begin{gathered} 95.4 \\ (129.6) \end{gathered}$	$\begin{gathered} 167.3 \\ (226.8) \end{gathered}$	$\begin{gathered} 159 \\ (216) \end{gathered}$	$\begin{aligned} & 278.8 \\ & (378) \end{aligned}$
300/4*	$\begin{gathered} 79.5 \\ (108) \end{gathered}$	$\begin{aligned} & 139.4 \\ & (189) \end{aligned}$	$\begin{gathered} 190.8 \\ (259.2) \end{gathered}$	$\begin{gathered} 334.6 \\ (453.6) \end{gathered}$	$\begin{gathered} 318 \\ (432) \end{gathered}$	$\begin{aligned} & 557.6 \\ & (756) \end{aligned}$
300/6*	$\begin{aligned} & 119.3 \\ & (162) \end{aligned}$	$\begin{gathered} 209.1 \\ (283.5) \end{gathered}$	$\begin{gathered} 286.2 \\ (388.8) \end{gathered}$	$\begin{gathered} 501.8 \\ (680.4) \end{gathered}$	$\begin{gathered} 477 \\ (648) \end{gathered}$	$\begin{gathered} 836.4 \\ (1,134) \end{gathered}$
300/8*	$\begin{aligned} & 159.3 \\ & (216) \end{aligned}$	$\begin{aligned} & 278.8 \\ & (378) \end{aligned}$	$\begin{gathered} 382.2 \\ (518.4) \end{gathered}$	$\begin{gathered} 669 \\ (907.2) \end{gathered}$	$\begin{gathered} 637 \\ (864) \end{gathered}$	$\begin{gathered} 1,115 \\ (1,512) \end{gathered}$

* For single actuator operation torques for 300/1 are applicable.

Model ${ }^{6}$	Speed ${ }^{4}$ Max.	Heat Capacity for Effective Cooling Speeds							Inertia Rotating Parts	Weight	
		HP(kW) ${ }^{5}$							$\begin{gathered} \mathrm{lb.ft}^{2} \\ \left(\mathrm{kbm}^{2}\right) \end{gathered}$	lbs.(kg)	
	RPM	$\begin{gathered} 50 \\ \text { RPM } \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} 200 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} 300 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} 400 \\ \text { RPM } \\ \hline \end{array}$	$\begin{gathered} 500 \\ \text { RPM } \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & \text { RPM } \\ & \hline \end{aligned}$		Total	Rotating
300/1	1900	$\begin{aligned} & 2.82 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 3.22 \\ & (2.4) \end{aligned}$	Without Fan			$\begin{aligned} & 6.04 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 6.71 \\ & (5.0) \end{aligned}$	$\begin{gathered} 2.966 \\ (0.125) \end{gathered}$	$\begin{aligned} & 38.140 \\ & (17.3) \end{aligned}$	$\begin{gathered} 29.883 \\ (13.6) \end{gathered}$
300/2	1900			$\begin{aligned} & 4.02 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 4.69 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$				$\begin{aligned} & 39.904 \\ & (18.1) \end{aligned}$	
300/4	1900	$\begin{aligned} & 6.71 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 6.71 \\ & (5.0) \end{aligned}$	$\begin{aligned} & \text { With E } \\ & 6.71 \\ & (5.0) \end{aligned}$	tric C		$\begin{aligned} & 8.05 \\ & (6.0) \end{aligned}$	$\begin{aligned} & 8.05 \\ & (6.0) \end{aligned}$		$\begin{aligned} & 49.604 \\ & (22.5) \end{aligned}$	
300/6	1900				$\begin{aligned} & 6.71 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 7.38 \\ & (5.5) \end{aligned}$				$\begin{aligned} & 59.525 \\ & (27.0) \end{aligned}$	
300/8	1900									$\begin{gathered} 69.446 \\ (31.5) \end{gathered}$	

[^12]
Pneumatic Brakes

ModEvo Model 350

Model	Minimum Torques					
	Minimum (3 PSI) $\left(0.2\right.$ Bars) ${ }^{1} 1 \mathrm{lb.ft}$ (Nm)					
	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$
	25\% Actuators		60\% Actuators		100 \% Actuators	
350/1	$\begin{gathered} 0.9 \\ (1.2) \end{gathered}$	$\begin{aligned} & 1.5 \\ & (2) \end{aligned}$	$\begin{gathered} 2.1 \\ (2.9) \end{gathered}$	$\begin{gathered} 3.5 \\ (4.8) \end{gathered}$	$\begin{gathered} \hline 3.5 \\ (4.8) \end{gathered}$	$\begin{aligned} & 5.9 \\ & (8) \end{aligned}$
350/2*	$\begin{gathered} 1.8 \\ (2.4) \end{gathered}$	$\begin{aligned} & 3.0 \\ & (4) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (5.8) \end{aligned}$	$\begin{gathered} 7.1 \\ (9.6) \end{gathered}$	$\begin{gathered} 7.1 \\ (9.6) \end{gathered}$	$\begin{aligned} & 11.8 \\ & (16) \end{aligned}$
350/4*	$\begin{gathered} 3.6 \\ (4.8) \end{gathered}$	$\begin{aligned} & 5.9 \\ & \text { (8) } \end{aligned}$	$\begin{gathered} 8.5 \\ (11.5) \end{gathered}$	$\begin{gathered} 14.2 \\ (19.2) \end{gathered}$	$\begin{gathered} 14.2 \\ (19.2) \end{gathered}$	$\begin{aligned} & 23.6 \\ & \text { (32) } \end{aligned}$
350/6*	$\begin{array}{r} 5.3 \\ (7.2) \end{array}$	$\begin{aligned} & 8.9 \\ & (12) \end{aligned}$	$\begin{aligned} & 12.7 \\ & (17.3) \end{aligned}$	$\begin{gathered} 21.2 \\ (28.8) \end{gathered}$	$\begin{aligned} & 21.2 \\ & (28.8) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (48) \end{aligned}$
350/8*	$\begin{gathered} 7.1 \\ (9.6) \end{gathered}$	$\begin{aligned} & 11.8 \\ & (16) \end{aligned}$	$\begin{gathered} 17 \\ (9.6) \end{gathered}$	$\begin{gathered} 28.3 \\ (38.4) \end{gathered}$	$\begin{array}{r} 28.3 \\ (38.4) \end{array}$	$\begin{aligned} & 47.2 \\ & (64) \end{aligned}$
350/10*	$\begin{aligned} & 8.9 \\ & (12) \end{aligned}$	$\begin{aligned} & 14.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 21.2 \\ & (28.8) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (48) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (48) \\ & \hline \end{aligned}$	$\begin{aligned} & 59.0 \\ & (80) \end{aligned}$

Maximum Torques
Maximum (87 PSI) (6 Bars)

Lb.ft.(Nm)						
$350 / 1$	24	42	57.55	101	95.9	168
	(32.5)	(57)	(78)	(137)	(130)	(228)
$350 / 2^{*}$	48	84.1	115.1	201.8	191.8	336.4
	(65)	(114)	(156)	(273.6)	(260)	(456)
$350 / 4^{*}$	95.9	168.2	230.2	403.6	383.6	672.7
	(130)	(228)	(312)	(547.2)	(520)	(912)
$350 / 6^{*}$	143.8	252.3	345.2	605.4	575.3	1009
	(195)	(342)	(468)	(820.8)	(780)	$(1,368)$
$350 / 8^{*}$	190.5	336.4	457.3	807.2	762.1	$1,345.4$
	(260)	(456)	(624)	$(1,094.4)$	$(1,040)$	$(1,824)$
$350 / 10^{*}$	239.7	420.4	575.3	1,009	$9,58.9$	$1,681.7$
	(325)	(570)	(780)	$(1,368)$	$(1,300)$	$(2,280)$

* For single actuator operation torques for 350/1 are applicable.

Model ${ }^{6}$	Speed ${ }^{4}$ Max.	Heat Capacity for Effective Cooling Speeds							Inertia Rotating Parts		
		HP(kW) ${ }^{5}$							$\begin{gathered} \begin{array}{c} {\mathrm{lb} . \mathrm{ft}^{2}}^{\left(\mathrm{kbm}^{2}\right)} \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	lbs.(kg)	
	RPM	$\begin{gathered} 50 \\ \text { RPM } \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} \hline 200 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} 300 \\ \text { RPM } \\ \hline \end{array}$	$\begin{array}{r} 400 \\ \text { RPM } \\ \hline \end{array}$	$\begin{aligned} & \hline 500 \\ & \text { RPM } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 600 \\ \text { RPM } \\ \hline \end{gathered}$		Total	Rotating
350/2	1650	$\begin{aligned} & 3.75 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 4.16 \\ & (3.1) \end{aligned}$	Without Fan			$\begin{aligned} & 8.85 \\ & (6.6) \end{aligned}$		$\begin{gathered} 5.458 \\ (0.230) \end{gathered}$	$\begin{gathered} \hline 57.982 \\ (24.8) \\ \hline \end{gathered}$	$\begin{aligned} & 46.958 \\ & (20.3) \end{aligned}$
350/4	1650			$\begin{aligned} & 5.63 \\ & (4.2) \end{aligned}$	6.44 (4.8)	$\begin{aligned} & 7.38 \\ & (5.5) \end{aligned}$		$\begin{aligned} & 9.66 \\ & (7.2) \end{aligned}$		$\begin{aligned} & 69.005 \\ & (29.2) \\ & \hline \end{aligned}$	
350/6	1650	$\begin{gathered} 7.8 \\ (5.8) \end{gathered}$	$\begin{aligned} & 8.45 \\ & (6.3) \end{aligned}$	With Electric Cooling Fan			$\begin{aligned} & 8.72 \\ & (6.5) \end{aligned}$			$\begin{gathered} 80.248 \\ (33.7) \end{gathered}$	
350/8	1650			$\begin{aligned} & 8.72 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 8.72 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 8.72 \\ & (6.5) \end{aligned}$		$\begin{aligned} & 8.72 \\ & (6.5) \end{aligned}$		$\begin{gathered} 91.271 \\ (38.2) \\ \hline \end{gathered}$	
350/10	1650									$\begin{gathered} 102.294 \\ (42.7) \end{gathered}$	

${ }^{1}$ Minimum torques were calculated using a multiplier of 0.6 for LC times Standard.
${ }^{2}$ LC - Low Coefficient based on 0.2 Coefficient of friction.
${ }^{3}$ Standard based on 0.35 Coefficient of friction.
${ }^{4}$ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.
${ }^{5}$ Limit LC to 70% of heat capacity.
${ }^{6}$ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

Model	Minimum Torques					
	$\begin{gathered} \text { Minimum (3 PSI) }(0.2 \text { Bars })^{1} \\ \text { lb.ft.(Nm) } \end{gathered}$					
	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$
	25\% Actuators		60\% Actuators		100 \% Actuators	
400/1	$\begin{gathered} 1.1 \\ (1.5) \end{gathered}$	$\begin{gathered} 1.9 \\ (2.5) \end{gathered}$	$\begin{gathered} \hline 2.6 \\ (3.6) \end{gathered}$	4.4 (6)	4.4 (6)	$\begin{gathered} \hline 7.4 \\ (10) \end{gathered}$
400/2*	$\begin{aligned} & 2.2 \\ & (3) \end{aligned}$	$\begin{aligned} & 3.7 \\ & (5) \end{aligned}$	$\begin{gathered} 5.3 \\ (7.2) \end{gathered}$	$\begin{gathered} 8.9 \\ (12) \end{gathered}$	$\begin{aligned} & 8.9 \\ & (12) \end{aligned}$	$\begin{aligned} & 14.8 \\ & (20) \end{aligned}$
400/4*	$\begin{aligned} & 4.4 \\ & (6) \end{aligned}$	$\begin{gathered} 7.4 \\ (10) \end{gathered}$	$\begin{gathered} 10.6 \\ (14.4) \end{gathered}$	$\begin{aligned} & 17.7 \\ & (24) \end{aligned}$	$\begin{aligned} & 17.7 \\ & (24) \end{aligned}$	$\begin{aligned} & 29.5 \\ & (40) \end{aligned}$
400/6*	$\begin{aligned} & 6.7 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 11.1 \\ & (15) \end{aligned}$	$\begin{gathered} 16 \\ (21.6) \end{gathered}$	$\begin{aligned} & 26.6 \\ & (36) \end{aligned}$	$\begin{aligned} & 26.6 \\ & (36) \end{aligned}$	$\begin{aligned} & 44.3 \\ & (60) \end{aligned}$
400/8*	$\begin{aligned} & 8.9 \\ & (12) \end{aligned}$	$\begin{aligned} & 14.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.2 \\ & (28.8) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (48) \end{aligned}$	$\begin{aligned} & 35.4 \\ & (48) \end{aligned}$	$\begin{aligned} & 59.0 \\ & (80) \end{aligned}$
400/10*	$\begin{aligned} & 11.1 \\ & (15) \end{aligned}$	$\begin{aligned} & 18.5 \\ & (25) \end{aligned}$	$\begin{aligned} & 26.6 \\ & (36) \end{aligned}$	$\begin{aligned} & 44.3 \\ & (60) \end{aligned}$	$\begin{aligned} & 44.3 \\ & (60) \end{aligned}$	$\begin{gathered} 73.8 \\ (100) \end{gathered}$
400/12*	$\begin{aligned} & 13.3 \\ & (18) \end{aligned}$	$\begin{aligned} & 22.1 \\ & (30) \end{aligned}$	$\begin{gathered} 31.9 \\ (43.2) \end{gathered}$	53.1 (72)	53.1 (72)	$\begin{aligned} & 88.5 \\ & (120) \end{aligned}$

Maximum Torques
Maximum (87 PSI) (6 Bars)

Ib.ft.(Nm)						
$400 / 1$	28.15	49.2	67.5	118	112.5	196.9
	(38.15)	(66.7)	(91.5)	(160)	(152.5)	(267)
$400 / 2^{*}$	56.3	98.3	135	236	225	393.9
	(76.3)	(133.5)	(183)	(320.4)	(305)	(534)
$400 / 4^{\star}$	112.5	197	270	472.7	450	787.8
	(152.5)	(267)	(366)	(640.8)	(610)	$(1,068)$
$400 / 6^{\star}$	168.7	295.4	404.9	708.9	674.9	$1,181.9$
	(228.8)	(400.5)	(549)	(961.2)	(915)	$(1,602)$
$400 / 8^{*}$	225	393.9	539.9	945.3	899.9	$1,575.5$
	(305)	(534)	(732)	$(1,281.6)$	$(1,220)$	$(2,136)$
$400 / 10^{*}$	281.2	492.4	674.9	$1,181.6$	$1,124.8$	$1,969.4$
	(381.3)	(667.5)	(915)	$(1,602)$	$(1,525)$	$(2,670)$
$400 / 12^{*}$	347.5	590.8	809.9	$1,417.9$	$1,349.8$	$2,363.3$
	(457.5)	(801)	$(1,098)$	$(1,922.4)$	$(1,830)$	$(3,204)$

* For single actuator operation torques for 400/1 are applicable.

${ }^{1}$ Minimum torques were calculated using a multiplier of 0.6 for LC times Standard.
${ }^{2}$ LC - Low Coefficient based on 0.2 Coefficient of friction.
${ }^{3}$ Standard based on 0.35 Coefficient of friction.
${ }^{4}$ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.
${ }^{5}$ Limit LC to 70% of heat capacity.
${ }^{6}$ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

ModEvo Model 450

Model	Minimum Torques					
	$\begin{gathered} \text { Minimum (3 PSI) (0.2 Bars) } \\ \text { lb.ft.(Nm) } \end{gathered}$					
	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$	LC ${ }^{2}$	Std ${ }^{3}$
	25\% Actuators		60\% Actuators		100 \% Actuators	
450/1	$\begin{gathered} 1.2 \\ (1.7) \end{gathered}$	$\begin{gathered} \hline 2.0 \\ (2.8) \end{gathered}$	$\begin{gathered} 2.9 \\ (4.0) \end{gathered}$	$\begin{gathered} 4.9 \\ (6.6) \end{gathered}$	$\begin{gathered} 4.9 \\ (6.6) \end{gathered}$	$\begin{gathered} \hline 8.1 \\ (11) \end{gathered}$
450/2*	$\begin{gathered} 2.3 \\ (3.2) \end{gathered}$	$\begin{gathered} 3.9 \\ (5.3) \end{gathered}$	$\begin{gathered} 5.6 \\ (7.6) \end{gathered}$	$\begin{gathered} 9.3 \\ (12.6) \end{gathered}$	$\begin{gathered} 9.3 \\ (12.6) \end{gathered}$	$\begin{aligned} & 15.5 \\ & (21) \end{aligned}$
450/4*	$\begin{gathered} 4.7 \\ (6.3) \end{gathered}$	$\begin{gathered} 7.8 \\ (10.5) \end{gathered}$	$\begin{gathered} 11.2 \\ (15.1) \end{gathered}$	$\begin{gathered} 18.6 \\ (25.2) \end{gathered}$	$\begin{gathered} 18.6 \\ (25.2) \end{gathered}$	$\begin{aligned} & 31.0 \\ & (42) \end{aligned}$
450/6*	$\begin{gathered} 7 \\ (9.5) \end{gathered}$	$\begin{gathered} 11.6 \\ (37.8) \end{gathered}$	$\begin{gathered} 16.7 \\ (22.7) \end{gathered}$	$\begin{gathered} 27.9 \\ (37.8) \end{gathered}$	$\begin{gathered} 27.9 \\ (37.8) \end{gathered}$	$\begin{aligned} & 46.5 \\ & (63) \end{aligned}$
450/8*	$\begin{gathered} 9.3 \\ (12.6) \end{gathered}$	$\begin{gathered} 15.7 \\ (15.5) \end{gathered}$	$\begin{gathered} 22.3 \\ (30.2) \end{gathered}$	$\begin{gathered} 37.7 \\ (50.4) \end{gathered}$	$\begin{gathered} 37.2 \\ (50.4) \end{gathered}$	$\begin{aligned} & 62.0 \\ & (84) \end{aligned}$
450/10*	$\begin{gathered} 11.6 \\ (15.8) \end{gathered}$	$\begin{gathered} 19.4 \\ (26.3) \end{gathered}$	$\begin{gathered} 27.9 \\ (37.8) \end{gathered}$	$\begin{aligned} & 46.5 \\ & (63) \end{aligned}$	$\begin{aligned} & 46.5 \\ & \text { (63) } \end{aligned}$	$\begin{gathered} 77.5 \\ (105) \end{gathered}$
450/12*	$\begin{gathered} 13.9 \\ (18.9) \end{gathered}$	$\begin{gathered} 23.2 \\ (31.5) \end{gathered}$	$\begin{gathered} 33.4 \\ (45.4) \end{gathered}$	$\begin{gathered} 55.7 \\ (75.6) \end{gathered}$	$\begin{gathered} 55.7 \\ (75.6) \end{gathered}$	$\begin{aligned} & 92.9 \\ & (126) \end{aligned}$
450/14*	$\begin{gathered} 13.6 \\ (22.1) \end{gathered}$	$\begin{gathered} 27.1 \\ (27.1) \end{gathered}$	$\begin{gathered} 39 \\ (52.9) \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ (88.2) \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ (88.2) \\ \hline \end{gathered}$	$\begin{aligned} & 108.4 \\ & (147) \end{aligned}$

Maximum Torques
Maximum (87 PSI) (6 Bars)

lb.ft.(Nm)						
450/1	$\begin{gathered} 32.45 \\ (44) \end{gathered}$	$\begin{aligned} & 56.7 \\ & (77) \end{aligned}$	$\begin{gathered} 77.9 \\ (105.6) \end{gathered}$	$\begin{gathered} 136.3 \\ (189.8) \end{gathered}$	$\begin{aligned} & 129.8 \\ & (176) \end{aligned}$	$\begin{aligned} & 227.2 \\ & (308) \end{aligned}$
450/2*	$\begin{aligned} & 64.9 \\ & (88) \end{aligned}$	$\begin{aligned} & 113.6 \\ & (154) \end{aligned}$	$\begin{gathered} 155.8 \\ (211.2) \end{gathered}$	$\begin{gathered} 272.6 \\ (369.6) \end{gathered}$	$\begin{aligned} & 259.6 \\ & (352) \end{aligned}$	$\begin{aligned} & 454.4 \\ & (616) \end{aligned}$
450/4*	$\begin{aligned} & 129.8 \\ & (176) \end{aligned}$	$\begin{aligned} & 227.2 \\ & (308) \end{aligned}$	$\begin{gathered} 311.6 \\ (422.4) \end{gathered}$	$\begin{gathered} 545.2 \\ (739.2) \end{gathered}$	$\begin{aligned} & 519.3 \\ & (704) \end{aligned}$	$\begin{gathered} 908.7 \\ (1,232) \end{gathered}$
450/6*	$\begin{aligned} & 194.7 \\ & (264) \end{aligned}$	$\begin{aligned} & 340.8 \\ & (462) \end{aligned}$	$\begin{gathered} 467.3 \\ (633.6) \end{gathered}$	$\begin{gathered} 817.9 \\ (1,108.8) \end{gathered}$	$\begin{gathered} 778.9 \\ (1,056) \end{gathered}$	$\begin{aligned} & 1,363.1 \\ & (1,848) \end{aligned}$
450/8*	$\begin{aligned} & 259.6 \\ & (352) \end{aligned}$	$\begin{aligned} & 454.4 \\ & (616) \end{aligned}$	$\begin{gathered} 623.1 \\ (844.8) \end{gathered}$	$\begin{gathered} 1,090.4 \\ (1,478.4) \end{gathered}$	$\begin{aligned} & 1,038.5 \\ & (1,408) \end{aligned}$	$\begin{aligned} & 1,817.4 \\ & (2,464) \end{aligned}$
450/10*	$\begin{aligned} & 324.6 \\ & (440) \end{aligned}$	$\begin{gathered} 568 \\ (770) \end{gathered}$	$\begin{gathered} 778.9 \\ (1,056) \end{gathered}$	$\begin{aligned} & 1,363.1 \\ & (1,848) \end{aligned}$	$\begin{aligned} & 1,298.2 \\ & (1,760) \end{aligned}$	$\begin{aligned} & 2,271.8 \\ & (3,080) \end{aligned}$
450/12*	$\begin{aligned} & 389.5 \\ & (528) \end{aligned}$	$\begin{aligned} & 681.6 \\ & (924) \end{aligned}$	$\begin{gathered} 934.7 \\ (1,267.2) \end{gathered}$	$\begin{gathered} 1,635.7 \\ (2,217.6) \end{gathered}$	$\begin{aligned} & 1,557.8 \\ & (2,112) \end{aligned}$	$\begin{aligned} & 2,726.2 \\ & (3,696) \end{aligned}$
450/14*	$\begin{aligned} & 454.4 \\ & (616) \end{aligned}$	$\begin{gathered} 795.1 \\ (1,078) \end{gathered}$	$\begin{gathered} 1,090.4 \\ (1,478.4) \end{gathered}$	$\begin{gathered} 1,908.3 \\ (2,587.2) \end{gathered}$	$\begin{aligned} & 1,817.4 \\ & (2,464) \end{aligned}$	$\begin{aligned} & 3,180.5 \\ & (4,312) \end{aligned}$

* For single actuator operation torques for 450/1 are applicable.

Model ${ }^{6}$	Speed ${ }^{4}$ Max.	Heat Capacity for Effective Cooling Speeds							Inertia Rotating Parts	Weight		
		HP(kW) ${ }^{5}$							$\begin{gathered} \mathrm{lb.ft}^{2} \\ \left(\mathrm{kbm}^{2}\right) \\ \hline \end{gathered}$	lbs.(kg)		
	RPM	$\begin{gathered} 50 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 100 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 200 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 300 \\ \text { RPM } \end{gathered}$	$\begin{gathered} \hline 400 \\ \text { RPM } \end{gathered}$	$\begin{gathered} \hline 500 \\ \text { RPM } \end{gathered}$	$\begin{gathered} \hline 600 \\ \text { RPM } \end{gathered}$		Total	Rotating	
450/2	1250	$\begin{aligned} & 4.56 \\ & (3.4 \end{aligned}$	$\begin{aligned} & 5.77 \\ & (4.3) \end{aligned}$	Without Fan			$\begin{aligned} & 12.34 \\ & (9.2) \end{aligned}$	$\begin{aligned} & 13.41 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 14.475 \\ & (0.610) \end{aligned}$	$\begin{gathered} \hline 82.673 \\ (37.5) \\ \hline \end{gathered}$	$\begin{aligned} & 72.752 \\ & (33.0) \end{aligned}$	
450/4	1250						$\begin{aligned} & 92.374 \\ & (41.9) \end{aligned}$					
450/6	1250			$\begin{aligned} & 8.18 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 9.39 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 10.46 \\ & (7.8) \end{aligned}$				$\begin{gathered} 102.294 \\ (46.4) \\ \hline \end{gathered}$		
450/8	1250	$\begin{aligned} & 11.40 \\ & (8.5) \end{aligned}$	$\begin{gathered} 12.74 \\ (9.5) \end{gathered}$	With Electric Cooling Fan				$\begin{aligned} & 16.76 \\ & (12.5) \end{aligned}$		$\begin{aligned} & 17.84 \\ & (13.3) \end{aligned}$		$\begin{gathered} 112.215 \\ (50.9) \\ \hline \end{gathered}$
450/10	1250			$\begin{aligned} & 13.41 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 14.48 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 15.56 \\ & (11.6) \end{aligned}$	$\begin{gathered} 122.136 \\ (55.4) \end{gathered}$					
450/12	1250						$\begin{gathered} 131.836 \\ (59.8) \end{gathered}$					
450/14	1250						$\begin{gathered} 141.757 \\ (64.3) \end{gathered}$					

[^13]
ModEvo Dimensions

Dimensions: inches (mm)

Size	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$
ØA - Disc Size	9.843	11.811	13.78	15.748	17.717
ØB - Overall	(250)	(300)	(350)	(400)	(450)
ØC - Bolt P.C.D	12.756	14.528	16.339	18.149	20.000
	(324)	(369)	(415)	(461)	(508)
ØD - Clearance Diameter	11.752	13.524	15.315	17.146	18.996
U - As Cast Bore	(298.5)	(343.5)	(389)	(435.5)	(482.5)
Maximum Bore	3.543	5.512	7.480	9.449	11.417
Z" - Angular Position	(90)	(140)	(190)	(240)	(290)
Maximum Number of Brake Modules	0.984	0.984	0.984	0.984	0.984
Wichita Generic Drawing Number	(25)	(25)	(25)	(25)	(25)
	2.165	3.110	4.606	5.354	6.063
Hose Length/Module 15667-020 W4 6977	(55)	(79)	(117)	(136)	(154)

Introduction

Ultrasonic signals are like audible sound waves, except the frequencies are much higher.

Ultrasonic transducers have piezoelectric crystals which resonate to a desired frequency and convert electric energy into acoustic energy and vice versa.

Diagram A shows how sound waves transmitted in the shape of a cone are reflected back to the transducer. At this stage, an output signal is produced to perform some kind of indicating or control function.

A minimum distance from the sensor is required to provide a time delay so that the "echoes" can be interpreted. Variables which can affect the operation of an ultrasonic sensor include: target surface angle, reflective surface roughness, change in temperature or humidity. The targets can have any kind of reflective form and even round objects are an acceptable target.

Advantages of Ultrasonic Sensors

- Discrete distances to moving objects can be detected and measured
- Less affected by target materials and surfaces
- Not affected by color
- Solid state - virtually unlimited mainte-nance-free life
- Small objects can be detected over longer distances
- Resistance to external disturbances such as vibration, infrared radiation, ambient noise, and EMI radiation

Applications for Ultrasonic Sensors

- Loop control
- Roll diameter, tension control, winding and unwind
- Web break detection
- Level detection/control
- Presence detection

UT30 Series

The Warner Electric UT30 Series Ultrasonic Sensors feature three types of sensors:

- Range measurement with analog output
- Proximity detection with range and hysteresis control
- Long range measurement with analog output
- CE Approved

Range Measurement with

Analog Output

This type of sensor is capable of both 4-20mA and/or 0-10V output signals, with an added feature of inverting these signals to $20-4 \mathrm{~mA}$ and for $10-0 \mathrm{~V}$ by means of simply wiring the units in the instructed way. Long range sensors come with current (mA) output signals only.

Diagram A

Analog Output

- 4-20mA and 0-10V
- Wire selectable inverted or non-inverted outputs

Specifications

Sensing Range	4-40" (101..1016mm)	8-80" (203..2032mm)
Ordering Information		
Model Description	UT30UP-DCA4-1016-CSI	UT30UP-DCA4-2032-CSI
Part Number	7600-448-001	7600-448-002
Electrical Data		
Voltage Range (min./max.)	20-30 VDC reverse polarity protected	20-30 VDC reverse polarity protected
Input Current	50 mA	50 mA
Transducer Frequency	212 KHz	150 KHz
Short Circuit Protected	Yes	Yes
LED - (strength indicator)	Yes - green to red; Page 152	Yes - green to red; Page 152
Response Time	30 mSec	50 mSec
Range Control	Zero and span (2 potentiometers)	Zero and span (2 potentiometers)
Mechanical Data		
Temperature Range (min./max.)	$-25^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-31.7^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$	$-25^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-31.7^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Degree of Protection	IP65/NEMA12	IP65/NEMA12
Body Material	Valox plastic	Valox plastic
Termination Cable 6 ft . (2m) Plug/socket	PVC 4×22 gauge Versions available to order	PVC 4×22 gauge Versions available to order
Accessories	1) Brackets	1) Brackets
Humidity	0-95\% non-condensing	0-95\% non-condensing

Mounting Bracket
M 30 ST

Accessories

Brackets for M 30×1.5

Ordering Information

Plastic - BK5-D34PA
Part Number: 596-0223-041
Metal - M 30 ST
Part Number: 7430-448-003
*Power Supply - NG24 110/220 VAC Input 24 VDC @ 300mA Output
Part Number: 7500-448-020
Note: Provides output to appropriate analog input control. (Ex. TCS-200-1)

Wiring Data

*Note: Some controls do not have 24 VDC outputs for the ultrasonic sensor power. These controls require the use of the NG 24 power supply

Operation and Setup

Minimum Analog Ranging

Minimum analog ranging is when you desire to have the full $4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ output over the minimum 5 -inch sensing span. Five inches of minimum sensing span can be adjusted anywhere in the sending range. For example 10 " $-15^{\prime \prime}$ or 25 " -30 ". To make this adjustment, place the target at the minimum sensing range and adjust P1 to 4 mA . Then move the target to the maximum sensing range and adjust P2 to 20 mA . Recheck the ratings and make appropriate adjustments, if necessary. See Diagram A.

Maximum Analog Ranging

Analog sensing in the maximum range means utilizing the entire $36^{\prime \prime}$ span (4"-40") and 72 " span ($8^{\prime \prime}-80^{\prime \prime}$). To adjust, set the target at the minimum range, either 4" or 8", and adjust P1 to 4 mA . Move the target to the maximum range and adjust P2 to 20mA. Recheck readings and make appropriate adjustments, if necessary. See Diagram B.

Inverted Analog Outputs

Inverted outputs means that the $4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ output signal will decrease proportionally with distance. To adjust, place the target at the minimum sensing distance and adjust P1 to 20 mA . Place the target at the maximum sensing distance and adjust P2 to 4 mA . Re-check readings and make appropriate adjustments, if necessary. See Diagram C.

LED Operation (Note D)

The LED is green when the unit is powered. It will fade to red as a target is detected with increased intensity as more signal is being reflected from the target. Note: Any color other than green equals a workable signal level.

Adjustment Pots

Zero and Span Control

Shaft Size	Keyway Size	Bushing Number	
		Warner Electric	Dodge
1/2	1/8 $\times 1 / 16$	180-0116	
9/16	$1 / 8 \times 1 / 16$	180-0117	
5/8	$3 / 16 \times 3 / 32$	180-0118	
11/16	$3 / 16 \times 3 / 32$	180-0119	
3/4	$3 / 16 \times 3 / 32$	180-0120	
13/16	$3 / 16 \times 3 / 32$	180-0121	1215
7/8	$3 / 16 \times 3 / 32$	180-0122	
15/16	$1 / 4 \times 1 / 8$	180-0123	
1	$1 / 4 \times 1 / 8$	180-0124	
1-1/16	$1 / 4 \times 1 / 8$	180-0125	
1-1/8	$1 / 4 \times 1 / 8$	180-0126	
1-3/16	$1 / 4 \times 1 / 8$	180-0127	
1-1/4	$1 / 4 \times 1 / 8$	180-0128	
1/2	$1 / 8 \times 1 / 16$	180-0131	
9/16	$1 / 8 \times 1 / 16$	180-0132	
5/8	$3 / 16 \times 3 / 32$	180-0133	
11/16	$3 / 16 \times 3 / 32$	180-0134	
3/4	$3 / 16 \times 3 / 32$	180-0135	
13/16	$3 / 16 \times 3 / 32$	180-0136	
7/8	$3 / 16 \times 3 / 32$	180-0137	
15/16	$1 / 4 \times 1 / 8$	180-0138	
1	$1 / 4 \times 1 / 8$	180-0139	
1-1/16	$1 / 4 \times 1 / 8$	180-0140	1615
1-1/8	$1 / 4 \times 1 / 8$	180-0141	
1-3/16	$1 / 4 \times 1 / 8$	180-0142	
1-1/4	$1 / 4 \times 1 / 8$	180-0143	
1-5/16	$5 / 16 \times 5 / 32$	180-0144	
1-3/8	$5 / 16 \times 5 / 32$	180-0145	
1-7/16	$3 / 8 \times 3 / 16$	180-0146	
1-1/2	$3 / 8 \times 3 / 16$	180-0147	
1-9/16	$3 / 8 \times 3 / 16$	180-0148	
1-5/8	$3 / 8 \times 3 / 16$	180-0149	
1/2	$1 / 8 \times 1 / 16$	180-0185	
9/16	$1 / 8 \times 1 / 16$	180-0186	
5/8	$3 / 16 \times 3 / 32$	180-0187	
11/16	$3 / 16 \times 3 / 32$	180-0188	
3/4	$3 / 16 \times 3 / 32$	180-0189	
13/16	$3 / 16 \times 3 / 32$	180-0190	
7/8	$3 / 16 \times 3 / 32$	180-0191	
15/16	$1 / 4 \times 1 / 8$	180-0192	
1	$1 / 4 \times 1 / 8$	180-0193	
1-1/16	$1 / 4 \times 1 / 8$	180-0194	2517
1-1/8	$1 / 4 \times 1 / 8$	180-0195	
1-3/16	$1 / 4 \times 1 / 8$	180-0196	
1-1/4	$1 / 4 \times 1 / 8$	180-0197	
1-5/16	$5 / 16 \times 5 / 32$	180-0198	
1-3/8	$5 / 16 \times 5 / 32$	180-0199	
1-7/16	$3 / 8 \times 3 / 16$	180-0200	
1-1/2	$3 / 8 \times 3 / 16$	180-0201	
1-9/16	$3 / 8 \times 3 / 16$	180-0202	

Shaft Size	Keyway Size	Bushing Number	
		Warner Electric	Dodge
1-5/8	$3 / 8 \times 3 / 16$	180-0203	
1-1/16	$3 / 8 \times 3 / 16$	180-0204	
1-3/4	$3 / 8 \times 3 / 16$	180-0205	
1-13/16	$1 / 2 \times 1 / 4$	180-0206	
1-7/8	$1 / 2 \times 1 / 4$	180-0207	
1-15/16	$1 / 2 \times 1 / 4$	180-0208	
2	$1 / 2 \times 1 / 4$	180-0209	
2-1/16	$1 / 2 \times 1 / 4$	180-0210	2517
2-1/8	$1 / 2 \times 1 / 4$	180-0211	
2-3/16	$1 / 2 \times 1 / 4$	180-0212	
2-1/4	$1 / 2 \times 1 / 4$	180-0213	
2-5/16	$5 / 8 \times 5 / 16$	180-0214	
2-3/8	$5 / 8 \times 5 / 16$	180-0215	
2-7/16	$5 / 8 \times 5 / 16$	180-0216	
2-1/2	$5 / 8 \times 5 / 16$	180-0217	
15/16	$1 / 4 \times 1 / 8$	180-0262	
1	$1 / 4 \times 1 / 8$	180-0263	
1-1/16	$1 / 4 \times 1 / 8$	180-0264	
1-1/8	$1 / 4 \times 1 / 8$	180-0265	
1-3/16	$1 / 4 \times 1 / 8$	180-0266	
1-1/4	$1 / 4 \times 1 / 8$	180-0267	
1-5/16	$5 / 16 \times 5 / 32$	180-0268	
1-3/8	$5 / 16 \times 5 / 32$	180-0269	
1-7/16	$3 / 8 \times 3 / 16$	180-0270	
1-1/2	$3 / 8 \times 3 / 16$	180-0271	
1-9/16	$3 / 8 \times 3 / 16$	180-0272	
1-5/8	$3 / 8 \times 3 / 16$	180-0273	
1-1/16	$3 / 8 \times 3 / 16$	180-0274	
1-3/4	$3 / 8 \times 3 / 16$	180-0275	
1-13/16	$1 / 2 \times 1 / 4$	180-0276	
1-7/8	$1 / 2 \times 1 / 4$	180-0277	
1-15/16	$1 / 2 \times 1 / 4$	180-0278	3030
2	$1 / 2 \times 1 / 4$	180-0279	
2-1/16	$1 / 2 \times 1 / 4$	180-0280	
2-1/8	$1 / 2 \times 1 / 4$	180-0281	
2-3/16	$1 / 2 \times 1 / 4$	180-0282	
2-1/4	$1 / 2 \times 1 / 4$	180-0283	
2-15/16	$5 / 8 \times 5 / 16$	180-0284	
2-3/8	$5 / 8 \times 5 / 16$	180-0285	
2-7/16	$5 / 8 \times 5 / 16$	180-0286	
2-1/2	$5 / 8 \times 5 / 16$	180-0287	
2-9/16	$5 / 8 \times 5 / 16$	180-0288	
2-5/8	$5 / 8 \times 5 / 16$	180-0289	
2-11/16	$5 / 8 \times 5 / 16$	180-0290	
2-3/4	$5 / 8 \times 5 / 16$	180-0291	
2-13/16	$3 / 4 \times 3 / 8$	180-0292	
2-7/8	$3 / 4 \times 3 / 8$	180-0293	
2-15/16	$3 / 4 \times 3 / 8$	180-0294	
3	$3 / 4 \times 3 / 8$	180-0295	

Dodge is a registered trademark of Reliance Electric Company

Analog (as in analog signal)

A signal that varies in amplitude or voltage over a given range.

Analog Follower Control

A control that accepts a voltage or current of varying amplitude and produces an identical, but stronger, signal at the output, suitable for driving a brake.

Butt Splice

A splice in which two webs are placed end to end without overlapping, and adhered together by a piece of adhesive placed over both. Most common with paperboard.

Controlled Stop

Stopping of the roll and web while maintaining tension at the prescribed level.

Core

The hollow center (usually made of heavy paperboard) on which the roll of material is wound.

Core Diameter

The smallest diameter of an unwind roll.

Cutter/Creaser

A machine used in the production of folding cartons. It uses sharp knives to cut through the board and dull knives to crease the board along a fold line.

Dancer

A movable, often pivoted, roll placed in a loop of the web, which is weighted or loaded to add tautness or tension to the web. Often used as part of a feedback loop to control brake operation.

Die Cutter

A machine which cuts or stamps paper or board to a specified size or shape with a steel die. The die is part of an impression cylinder in a rotary die cutter.

Duplex

Paper or paperboard that has a different color, texture or finish on either side. Also sometimes applied to any multi-ply paperboard.

Electro-Pneumatic Modulator

A device that modulates, or controls, an air brake in response to a set of control parameters.

Emergency Stop (E-Stop)

General term to describe immediate stop of a converting or printing machine due to a malfunction or unsafe condition. Normally done in fastest time possible.

Equipment Sizing or Sized

A method of tensioning a web at the infeed that is sometimes used in printing operations. An equipment sized in-feed roller is slightly smaller than the printing impression cylinder. This creates a back tension in the web since each rotation of the printing impression cylinder pulls more web than is being fed by each rotation of the in-feed roller. Not as common as a variable sized in-feed since it requires changing the in-feed roller along with the impression cylinder.

Festoon

A reserve area consisting of several loops of stored web. This reserve is drawn down to feed the converting process while roll feed is interrupted for splicing.

Force Transducer

A device that senses the magnitude of a load upon it (such as a tension load) and sends a corresponding signal out. Also called a load cell.

Grabbiness

"Stick-slip," or lack of smoothness during slip operation of a braking system.

Heat Dissipation (in a brake)

The ability of a brake to release heat generated by friction. Dissipation usually increases with RPM. Dissipation can also be increased by forced cooling, e.g., by a fan.

Inertia Stop

An emergency stop where the prime objective is to get the unwind roll and machine to a rapid stop, disregarding any control of the web condition. The inertia of the roll is the largest factor in determining speed of stop, for a given machine braking system.

Lap Splice

A splice in which the ends of two webs are overlapped and adhered together by a piece of adhesive placed on the contact side of one.

Load Cell

See Force Transducer.

Nip Rolls

A pair of driven, rotating rollers which act to pull the web into or through the converting process.

Pivot Point

The central point of rotation, as in a dancer arm.

Pivot Point Sensor

A sensor mounted at the pivot point of the dancer arm, which determines which direction the dancer is moving, and where it is in its arc of travel.

Register

The exact, corresponding placement of successively printed images on the web of material.

Sheeter

A machine that cuts a web of material into individual sheets.

Slip

The relative motion, or sliding, between the two members of a braking system. In tensioning, the smoothness of slip is critical to maintaining tension.

Slitter-Rewinder

A machine that unwinds the wide rolls of material, slits them to narrow widths, and rewinds them into narrow rolls.

Splice

The joining of the ends of two webs to make one continuous web.

Splicer

A machine with two（or more）unwind rolls of material．As one roll expires，the other is＂spliced＂to the end of the first， to provide a continuous web of material to the process．Splicers are referred to as＂zero－speed＂if the splice occurs when the new roll is stopped，with paper feeding from a festoon storage system．A＇flying splicer＇is one where the new roll is accelerated to line speed before splicing the roll，and roll feed is continuous．

Taper Tension

Constantly decreasing tension on winders to help eliminate telescoping and core crushing．

Tensile Strength

The force，parallel to the plane of the specimen，required to break a given length and width of material．

Tension

The tautness in a web of paper or material．The press or process pro－ duces a＂pull－through＂effect，which is countered by the unwind brake．Each material has an optimum tautness，or tension，and it is the job of the tension system to maintain this tension．

Torque

The braking force which holds the unwind roll from unwinding．Usually referred to in pound－feet or pound－inch－ es of torque produced by the brake．

Transducer

A device that changes one type of sig－ nal into another．In tensioning，the most common types are electric－to－pneumat－ ic transducers，and force transducers． See Force Transducer．

Web

A continuous strand of material coming from the roll in its full width．It remains in web form until＇terminated＂by a sheeter，die－cutter or other device．

Web Break Detectors

Sensing devices that monitor the web and signal a shutdown or E－stop if a web break occurs．This is a good photoelectric application．

Web Draw

Tension or tautness induced in the web by the pulling action of the printing press or process，resulting in web movement in that direction．

Wrap Angle

Refers to the wrap of the web around a roller，especially a dancer roller．Ex－ pressed as＂degrees of contact＂with the roller．

Conversion Factors

Millimeters $\times 0.03937=$ inches
Inches $\times 25.4=$ millimeters

Centimeters $\times 0.3937=$ inches
Inches $\times 2.54=$ centimeters
Meters／minute $\times 3.280=$ feet $/$ minute
Feet $/$ minute $\times 0.3048=$ meters $/$ minute
Kilograms $\times 2.205=$ pounds
Pounds $\times 0.4536=$ kilograms
Newtons $\times 0.22482=$ pounds
Pounds $\times 4.448=$ Newtons
Watts $\times 0.001341=$ horsepower
Horsepower $\times 746=$ watts
Kilogram－meter ${ }^{2} \times 23.753=$ pound－feet ${ }^{2}$
Pound－feet ${ }^{2} \times 0.0421=$ kilogram－meter ${ }^{2}$
Newton－meter $\times 0.722=$ pound－feet
Pound－feet $\times 1.385=$ Newton－meter
Grams $/$ meter $^{2} \times 0.613495=$ pounds（basis weight）
Pounds（basis weight）$\times 1.630=$ grams $/$ meter 2
Lineal feet $=\frac{36,000 \times \text { roll weight }}{\text { roll width } \times \text { basis weight }}$
Approximate roll unwind time $=\frac{\text { lineal feet }}{\text { linear speed }}$

Effective cylinder force at a given air pressure
$\mathrm{F}_{\mathrm{CYL} \text {（lbs．）}}=\mathrm{P}_{\mathrm{PSI}} \times \frac{\left(\text { cylinder piston diameter）in（in）}{ }^{2} \times \pi\right.}{4}$
Example：PSI＝ 30

$$
\begin{aligned}
& \text { CYL dia. }=2 \mathrm{in} . \\
& F=30 \times\left(\frac{2^{2} \times \pi}{4}\right)=94.2 \mathrm{lbs} .
\end{aligned}
$$

Index

By Part Number

Part Number	Model Number	Page
248-8000-003		37
295-0019		96
295-0021		96
295-0023		96
295-0026		96
295-0027		96
295-0028		96
295-0029		96
295-0030		96
295-0031		96
5161-101-008		79
5161-101-009		79
5161-271-021	ATTC25	79
5161-271-022	ATTC25	79
5161-271-023	ATTC25	79
5161-271-024	ATTC25	79
5161-271-025	ATTC25	79
5161-271-026	ATTC25	79
5161-271-027	ATTC25	79
5161-271-028	ATTC25	79
5162-101-004		79
5162-101-008		79
5162-101-009		79
5162-271-021	ATTC55	79
5162-271-022	ATTC55	79
5162-271-023	ATTC55	79
5162-271-024	ATTC55	79
5162-271-025	ATTC55	79
5162-271-026	ATTC55	79
5162-271-027	ATTC55	79
5162-271-028	ATTC55	79
5163-101-004		79
5163-101-008		79
5163-101-009		79
5163-271-021	ATTC115	79
5163-271-022	ATTC115	79
5163-271-023	ATTC115	79
5163-271-024	ATTC115	79
5163-271-025	ATTC1 15	79
5163-271-026	ATTC115	79
5163-271-027	ATTC1 15	79
5163-271-028	ATTC115	79
5191-10	ATTB25	79
5191-11	ATTB25	79
5191-12	ATTB25	79
5191-13	ATTB25	79
5191-6	ATTB25	79
5191-7	ATTB25	79
5191-8	ATTB25	79
5191-9	ATTB25	79
5192-10	ATTB55	79
5192-11	ATTB55	79
5192-12	ATTB55	79
5192-13	ATTB55	79
5192-6	ATTB55	79
5192-7	ATTB55	79
5192-8	ATTB55	79
5192-9	ATTB55	79
5193-10	ATTB115	79
5193-11	ATTB1 15	79
5193-12	ATTB115	79
5193-13	ATTB115	79
5193-6	ATTB115	79
5193-7	ATTB115	79
5193-8	ATTB115	79
5193-9	ATTB115	79
5216-101-003		97
5216-101-004		97
5216-101-005		97
5216-101-008		97
$5216-101-010$ $5216-101-011$		97
$5216-101-011$ $5216-101-012$		97
$5216-101-012$ $5216-101-013$		97 97
5216-101-018		97

Part Number	Model Number	Page
5216-101-019		97
5216-101-020		96
5216-101-020		97
5216-101-021		96
5216-101-021		97
5216-101-022		96
5216-101-022		97
5216-101-023		96
5216-101-024		96
5216-101-025		96
5216-101-026		96
5216-101-027		96
5216-101-028		96
5216-101-029		96
5216-101-030		96
5216-111-001		97
5216-111-003		97
5216-111-004		97
5216-295-001		97
5216-295-002		97
5216-295-003		97
5216-295-004		96
5216-295-005		96
5216-295-007		96
5216-295-026		96
5216-631-004		97
5216-631-009		96
5216-631-010		96
5216-631-013		96
5216-631-031		96
5310-2	TB-500	72
5310-24	TB-500	72
5311-2	TB-825	72
5311-24	TB-825	72
5312-1	TB-1000	72
5312-24	TB-1000	72
5313-1	TB-1225	72
5313-24	TB-1225	72
5314-1	TB-1525	72
5314-24	TB-1525	72
5365-10	TB-260	72
5365-11	TB-260	72
5365-12	TB-260	72
5365-2	TB-260	72
5365-3	TB-260	72
5365-5	TB-260	72
5365-6	TB-260	72
5365-8	TB-260	72
5365-9	TB-260	72
5367-10	TB-425	72
5367-11	TB-425	72
5367-12	TB-425	72
5367-5	TB-425	72
5367-6	TB-425	72
5367-7	TB-425	72
5367-8	TB-425	72
5367-9	TB-425	72
5375-1	TB-170	72
5375-2	TB-170	72
5375-3	TB-170	72
5375-4	TB-170	72
5375-5	TB-170	72
5375-6	TB-170	72
5401-169-141	PTB2.5 BL3	117
5401-169-151	PTB5 BL3	117
5401-169-161	PTB10 BL3	117
5401-169-171	PTB20 BL3	117
5401-169-211	POB 0.3	119
5401-169-221	POB 0.6	119
5401-169-231	POB 1.2	119
5401-169-241	POB 2.5	119
5401-169-251	POB 5	119
5401-169-261	POB 10	119
5401-169-271	POB 20	119
5401-169-281	POB 40	119

Part Number	Model Number	Page	Part Number	Model Number	Page
5401-169-291	POB 80	119	7430-448-003	NG24	153
5401-169-331	PRB1.2H	120	7600-448-001	UT30UP-DCA4-1016-CSI	153
5401-169-341	PRB2.5H	120	7600-448-002	UT30UP-DCA4-2032-CSI	153
5401-169-351	PRB5 ${ }^{\text {H }}$	120	AC10A12S	ESAC10	39
5401-169-361	PRB10H	120	AC10A12W1	ESAC10	39
5401-169-371	PRB20H	120	AC10A12W2	ESAC10	39
5401-270-111	PMC 10	121	AC10A16S	ESAC10	39
5401-270-121	PMC 20	121	AC10A16W1	ESAC10	39
5401-270-131	PMC 40	122	AC10A16W2	ESAC10	39
5401-270-211	POCO. 3	126	AC10A20S	ESAC10	39
5401-270-221	POC0. 6	126	AC10A20W1	ESAC10	39
5401-270-231	POC1. 2	126	AC10A20W2	ESAC10	39
5401-270-241	POC2.5	126	AC10A23S	ESAC10	39
5401-270-251	POC5	126	AC10A23W1	ESAC10	39
5401-270-261	POC10	126	AC10A23W2	ESAC10	39
5401-270-271	POC20	126	AC10B12S	ESAC10	39
5401-270-281	POC40	126	AC10B12W1	ESAC10	39
5401-270-291	POC80	126	AC10B12W2	ESAC10	39
5401-270-321	PHC0.6R	124	AC10B16S	ESAC10	39
5401-270-331	PHC1.2R	124	AC10B16W1	ESAC10	39
5401-270-341	PHC2.5R	124	AC10B16W2	ESAC10	39
5401-270-351	PHC5R	124	AC10B20S	ESAC10	39
5401-270-361	PHCIOR	124	AC10B20W1	ESAC10	39
5401-270-371	PHC20R	124	AC10B20W2	ESAC10	39
6910-101-001		37	AC10B23S	ESAC10	39
6910-101-007	STATE SWITCH	65	AC10B23W1	ESAC10	39
6910-101-066	I/P TRANSDUCER	47	AC10B23W2	ESAC10	39
6910-101-090	MCS2000-PRG	47	AC10C12S	ESAC10	39
6910-101-091	MCS2000-CRD	47	AC10C12W1	ESAC10	39
6910-101-092	MCS2000-IS	47	AC10C12W2	ESAC10	39
6910-101-093	MCS2000-DP	47	AC10C16S	ESAC10	39
6910-101-095	MCS2000-CBL	47	AC10C16W1	ESAC10	39
6910-101-096	MCS2000-WIN	47	AC10C16W2	ESAC10	39
6910-448-013	MCS-166	65	AC10C20S	ESAC10	39
6910-448-014	MCS-203	61	AC10C20W1	ESAC10	39
6910-448-015	P/M HOUSING	66	AC10c20W2	ESAC10	39
6910-448-016	W/S HOUSING	66	AC10C23S	ESAC10	39
6910-448-017	MCS 204	57	AC10C23W1	ESAC10	39
6910-448-018	P/M HOUSING	66	AC10C23W2	ESAC10	39
6910-448-019	W/S HOUSING	66	BA30M12KS	ESA30	39
6910-448-025	TCS-167	65	BA30P12KS	ESA30	39
6910-448-026	TCS-210	62	BA30P16KS	ESA30	39
6910-448-027	TCS-220	58	BA30P16KW1	ESA30	39
6910-448-028	P/M HOUSING	66	BA30P16KW2	ESA30	39
6910-448-029	W/S HOUSING	66	BA30P20KS	ESA30	39
6910-448-032	TCS-168	65	BA30P20KW1	ESA30	39
6910-448-042	TCS-310	64	BA30P20KW2	ESA30	39
6910-448-043	TCS-320	60	BA30P23KS	ESA30	39
6910-448-055	TCS 200	56	BA30P23KW1	ESA30	39
6910-448-066	MCS-207	63	BA30P23KW2	ESA30	39
6910-448-067	MCS-208	59	BA30T12KS	ESA30	39
6910-448-086	TCS 200-1	56	BA30T12KW1	ESA30	39
6910-448-087	TCS 200-1H	56	BA30T12KW2	ESA30	39
6910-448-091	MCS 2000-PS	47	BA30T16KS	ESA30	39
6910-448-092	MCS2000-DRV	47	BA30T16KW1	ESA30	39
6910-448-093	MCS2000-PSDRV	47	BA30T16KW2	ESA30	39
6910-448-094	MCS2000-PSDRVH	47	BA30T20KS	ESA30	39
6910-448-095	MCS2000-DRVH	47	BA30T20KW1	ESA30	39
6910-448-096	MCS2000-ECA	47	BA30T20KW2	ESA30	39
6910-448-098	MCS2000-PSH	47	BA30T23KS	ESA30	39
6910-448-100	FM01-100-AC	39	BA30T23KW1	ESA30	39
6910-448-102	FM01-250-AC	39	BA30T23KW2	ESA30	39
6910-448-104	FM01-500-AC	39	BA30U12KS	ESA30	39
6910-448-106	FM01-1000-AC	39	BA30U12KW1	ESA30	39
6910-448-108	FM01-2500-AC	39	BA30U12KW2	ESA30	39
6910-448-110	FM01-5000-AC	39	BA30U16KS	ESA30	39
6910-448-112	FM02-10K-AC	39	BA30U16KW1	ESA30	39
6910-448-120	MCS2000-CTDA	47	BA30U16KW2	ESA30	39
6910-448-121	MCS2000-CTLC	47	BA30U20KS	ESA30	39
7330-448-002	TCS-605-1	37	BA30U20KW1	ESA30	39
7330-448-002	TCS605-1	37	BA30U20KW2	ESA30	39
7330-448-003	TCS-605-5	37	BA30U23KS	ESA30	39
7330-448-003	TCS605-5	37	BA30U23KW1	ESA30	39
7330-448-004	TCS605-2	37	BA30U23KW2	ESA30	39
7330-448-005	TCS-605-NC1	37	BB30M12KS	ESB30	39

Index

By Part Number

Part Number	Model Number	Page	Part Number	Model Number	Page
BB30M12W1	ESB30	39	BB30Z16KW1	ESB30	39
BB30M12W2	ESB30	39	BB30Z16KW2	ESB30	39
BB30P12KS	ESB30	39	BB30Z20KS	ESB30	39
BB30P12KW1	ESB30	39	BB30Z20KW1	ESB30	39
BB30P12KW2	ESB30	39	BB30Z20KW2	ESB30	39
BB30P16KS	ESB30	39	BB30Z23KS	ESB30	39
BB30P16KW1	ESB30	39	BB30Z23KW1	ESB30	39
BB30P16KW2	ESB30	39	BB30Z23KW2	ESB30	39
BB30P20KS	ESB30	39	BC30M12KS	ESC30	39
BB30P20KW1	ESB30	39	BC30M12KW1	ESC30	39
BB30P20KW2	ESB30	39	BC30M12KW2	ESC30	39
BB30P23KS	ESB30	39	BC30P12KS	ESC30	39
BB30P23KW1	ESB30	39	BC30P12KW1	ESC30	39
BB30P23KW2	ESB30	39	BC30P12KW2	ESC30	39
BB30T12KS	ESB30	39	BC30P16KS	ESC30	39
BB30T12KW1	ESB30	39	BC30P16KW1	ESC30	39
BB30T12KW2	ESB30	39	BC30P16KW2	ESC30	39
BB30T16KS	ESB30	39	BC30P20KS	ESC30	39
BB30T16KW1	ESB30	39	BC30P20KW1	ESC30	39
BB30T16KW2	ESB30	39	BC30P20KW2	ESC30	39
BB30T20KS	ESB30	39	BC30P23KS	ESC30	39
BB30T20KW1	ESB30	39	BC30P23KW1	ESC30	39
BB30T20KW2	ESB30	39	BC30P23KW2	ESC30	39
BB30T23KS	ESB30	39	BC30T12KS	ESC30	39
BB30T23KW1	ESB30	39	BC30T12KW1	ESC30	39
BB30T23KW1	ESB30	39	BC30T12KW2	ESC30	39
BB30U12KS	ESB30	39	BC30T16KS	ESC30	39
BB30U12KW1	ESB30	39	BC30T16KW1	ESC30	39
BB30U12KW2	ESB30	39	BC30T16KW2	ESC30	39
BB30U16KS	ESB30	39	BC30T20KS	ESC30	39
BB30U16KW1	ESB30	39	BC30T20KW1	ESC30	39
BB30U16KW2	ESB30	39	BC30T20KW2	ESC30	39
BB30U20KS	ESB30	39	BC30T23KS	ESC30	39
BB30U20KW1	ESB30	39	BC30T23KW1	ESC30	39
BB30U20KW2	ESB30	39	BC30T23KW2	ESC30	39
BB30U23KS	ESB30	39	BC30U12KS	ESC30	39
BB30U23KW1	ESB30	39	BC30U12KW1	ESC30	39
BB30U23KW2	ESB30	39	BC30U12KW2	ESC30	39
BB30W12KS	ESB30	39	BC30U16KS	ESC30	39
BB30W12KW1	ESB30	39	BC30U16KW1	ESC30	39
BB30W12KW2	ESB30	39	BC30U16KW2	ESC30	39
BB30W16KS	ESB30	39	BC30U20KS	ESC30	39
BB30W16KW1	ESB30	39	BC30U20KW1	ESC30	39
BB30W16KW2	ESB30	39	BC30U20KW2	ESC30	39
BB30W20KS	ESB30	39	BC30U23KS	ESC30	39
BB30W20KW1	ESB30	39	BC30U23KW1	ESC30	
BB30W20KW2	ESB30	39	BC30U23KW2	ESC30	39
BB30W23KS	ESB30	39	BC30W12KS	ESC30	39
BB30W23KW1	ESB30	39	BC30W12KW1	ESC30	39
BB30W23KW2	ESB30	39	BC30W12KW2	ESC30	39
BB30X12KS	ESB30	39	BC30W16KS	ESC30	39
BB30X12KW1	ESB30	39	BC30W16KW1	ESC30	39
BB30X12KW2	ESB30	39	BC30W16KW2	ESC30	39
BB30X16KS	ESB30	39	BC30W20KS	ESC30	39
BB30X16KW1	ESB30	39	BC30W20KW1	ESC30	39
BB30X16KW2	ESB30	39	BC30W20KW2	ESC30	39
BB30X23KS	ESB30	39	BC30W23KS	ESC30	39
BB30X23KW1	ESB30	39	BC30W23KW1	ESC30	39
BB30X23KW2	ESB30	39	BC30W23KW2	ESC30	39
BB30Y12KS	ESB30	39	BC30X12KS	ESC30	39
BB30Y12KW1	ESB30	39	BC30X12KW1	ESC30	39
BB30Y12KW2	ESB30	39	BC30X12KW2	ESC30	39
BB30Y16KS	ESB30	39	BC30X16KS	ESC30	39
BB30Y16KW1	ESB30	39	BC30X16KW1	ESC30	39
BB30Y16KW2	ESB30	39	BC30X16KW2	ESC30	39
BB30Y20KS	ESB30	39	BC30X20KS	ESC30	39
BB30Y20KW1	ESB30	39	BC30X20KW1	ESC30	39
BB30Y20KW2	ESB30	39	BC30X20KW2	ESC30	39
BB30Y23KS	ESB30	39	BC30X23KS	ESC30	39
BB30Y23KW1	ESB30	39	BC30X23KW1	ESC30	39
BB30Y23KW2	ESB30	39	BC30X23KW2	ESC30	39
BB30Z12KS BB30Z12KW1	ESB30	39	BC30Y12KS	ESC30	39
BB30Z12KW1 BB30Z12KW2	ESB30	39 39	BC3OY12KW1	ESC30	39
BB30Z12KW2 BB30Z16KS	ESB30	39 39	BC30Y12KW2 BC30Y16KS	ESC30	39 39

 Index
By Model Number

Model Number	Part Number	Page	Model Number	Part Number	Page
ATTC25	5161-271-022	79	ESACIO	AC10C12W1	39
ATTC25	5161-271-023	79	ESACIO	AC10C12W2	39
ATTC25	5161-271-024	79	ESAC10	AC10C16S	39
ATTC25	5161-271-025	79	ESAC10	AC10C16W1	39
ATTC25	5161-271-026	79	ESAC10	AC10C16W2	39
ATTC25	5161-271-027	79	ESAC10	AC10C20S	39
ATTC25	5161-271-028	79	ESAC10	AC10C20W1	39
ATTC55	5162-271-021	79	ESAC10	AC10C20W2	39
ATTC55	5162-271-022	79	ESAC10	AC10C23S	39
ATTC55	5162-271-023	79	ESAC10	AC10C23W1	39
ATTC55	5162-271-024	79	ESAC10	AC10C23W2	39
ATTC55	5162-271-025	79	ESB30	BB30M12KS	39
ATTC55	5162-271-026	79	ESB30	BB30M12W1	39
ATTC55	5162-271-027	79	ESB30	BB30M12W2	39
ATTC55	5162-271-028	79	ESB30	BB30P12KS	39
ESA30	BA30M12KS	39	ESB30	BB30P12KW1	39
ESA30	BA30P12KS	39	ESB30	BB30P12KW2	39
ESA30	BA30P16KS	39	ESB30	BB30P16KS	39
ESA30	BA30P16KW1	39	ESB30	BB30P16KW1	39
ESA30	ВАЗОP16KW2	39	ESB30	BB30P16KW2	39
ESA3O	BA30P20KS	39	ESB30	BB30P20KS	39
ESA30	BA30P20KW1	39	ESB30	BB30P20KW1	39
ESA3O	BA30P20KW2	39	ESB30	BB30P20KW2	39
ESA30	BA30P23KS	39	ESB30	BB30P23KS	39
ESA30	BA30P23KW1	39	ESB30	BB30P23KW1	39
ESA30	BA30P23KW2	39	ESB30	BB30P23KW2	39
ESA30	BA30T12KS	39	ESB30	BB30T12KS	39
ESA30	BA30T12KW1	39	ESB30	BB30T12KW1	39
ESA30	BA30T12KW2	39	ESB30	BB30T12KW2	39
ESA30	BA30T16KS	39	ESB30	BB30T16KS	39
ESA30	ВАЗОТ16KW1	39	ESB30	BB30T16KW1	39
ESA30	BA30T16KW2	39	ESB30	BB30T16KW2	39
ESA30	BA30T20KS	39	ESB30	BB30T20KS	39
ESA30	BA30T20KW1	39	ESB30	BB30T20KW1	39
ESA30	BA30T20KW2	39	ESB30	BB30T20KW2	39
ESA30	BA30T23KS	39	ESB30	BB30T23KS	39
ESA30	BA30T23KW1	39	ESB30	BB30T23KW1	39
ESA30	BA30T23KW2	39	ESB30	BB30T23KW1	39
ESA30	BA30U12KS	39	ESB30	BB30U12KS	39
ESA30	BA30U12KW1	39	ESB30	BB30U12KW1	39
ESA30	BA30U12KW2	39	ESB30	BB30U12KW2	39
ESA3O	BA30U16KS	39	ESB30	BB30U16KS	39
ESA3O	BA30U16KW1	39	ESB30	BB30U16KW1	39
ESA30	BA30U16KW2	39	ESB30	BB30U16KW2	39
ESA30	BA30U20KS	39	ESB30	BB30U20KS	39
ESA30	BA30U20KW1	39	ESB30	BB30U20KW1	39
ESA30	BA30U20KW2	39	ESB30	BB30U20KW2	39
ESA30	BA30U23KS	39	ESB30	BB30U23KS	39
ESA30	BA30U23KW1	39	ESB30	BB30U23KW1	39
ESA30	BA30U23KW2	39	ESB30	BB30U23KW2	39
ESAC10	AC10A12S	39	ESB30	BB30W12KS	39
ESAC10	AC10A12W1	39	ESB30	BB30W12KW1	39
ESAC10	AC10A12W2	39	ESB30	BB30W12KW2	39
ESAC10	AC10A16S	39	ESB30	BB30W16KS	39
ESAC10	AC10A16W1	39	ESB30	BB30W16KW1	39
ESAC10	AC10A16W2	39	ESB30	BB30W16KW2	39
ESAC10	ACIOA20S	39	ESB30	BB30W20KS	39
ESAC10	AC10A20W1	39	ESB30	BB30W20KW1	39
ESAC10	AC10A20W2	39	ESB30	BB30W20KW2	39
ESAC10	AC10A23S	39	ESB30	BB30W23KS	39
ESAC10	AC10A23W1	39	ESB30	BB30W23KW1	39
ESAC10	AC10A23W2	39	ESB30	BB30W23KW2	39
ESAC10	AC10B12S	39	ESB30	BB30X12KS	39
ESAC10	AC10B12W1	39	ESB30	BB30X12KW1	39
ESAC10	AC10B12W2	39	ESB30	BB30X12KW2	39
ESAC10	AC10B16S	39	ESB30	BB30X16KS	39
ESAC10	AC10B16W1	39	ESB30	BB30X16KW1	39
ESAC10	AC10B16W2	39	ESB30	BB30X16KW2	39
ESAC10	AC10B20S	39	ESB30	BB30X23KS	39
ESAC10	AC10B20W1	39	ESB30	BB30X23KW1	39
ESAC10	AC10B20W2	39	ESB30	BB30X23KW2	39
ESAC10	AC10B23S	39	ESB30	BB30Y12KS	39
ESAC10	AC10B23W1	39	ESB30	BB30Y12KW1	39
ESAC10	AC10B23W2	39	ESB30	BB30Y12KW2	39
ESAC10	AC10C12S	39	ESB30	BB30Y16KS	39

Model Number	Part Number	Page	Model Number	Part Number	Page
ESB30	BB30Y16KW1	39	ESC30	BC30X16KW1	39
ESB30	BB30Y16KW2	39	ESC30	BC30X16KW2	39
ESB30	BB30Y20KS	39	ESC30	BC30X20KS	39
ESB30	BB30Y20KW1	39	ESC30	BC30X20KW1	39
ESB30	BB30Y20KW2	39	ESC30	BC30X20KW2	39
ESB30	BB30Y23KS	39	ESC30	BC30X23KS	39
ESB30	BB30Y23KW1	39	ESC30	BC30X23KW1	39
ESB30	BB30Y23KW2	39	ESC30	BC30X23KW2	39
ESB30	BB30Z12KS	39	ESC30	BC30Y12KS	39
ESB30	BB30Z12KW1	39	ESC30	BC30Y12KW1	39
ESB30	BB30Z12KW2	39	ESC30	BC30Y12KW2	39
ESB30	BB30Z16KS	39	ESC30	BC30Y16KS	39
ESB30	BB30Z16KW1	39	ESC30	BC30Y16KW1	39
ESB30	BB30Z16KW2	39	ESC30	BC30Y16KW2	39
ESB30	BB30Z20KS	39	ESC30	BC30Y20KS	39
ESB30	BB30Z20KW1	39	ESC30	BC30Y20KW1	39
ESB30	BB30Z20KW2	39	ESC30	BC30Y20KW2	39
ESB30	BB30Z23KS	39	ESC30	BC30Y23KS	39
ESB30	BB30Z23KW1	39	ESC30	BC30Y23KW1	39
ESB30	BB30Z23KW2	39	ESC30	BC30Y23KW2	39
ESC30	BC30M12KS	39	FM01-100-AC	6910-448-100	39
ESC30	BC30M12KW1	39	FM01-1000-AC	6910-448-106	39
ESC30	BC30M12KW2	39	FM01-250-AC	6910-448-102	39
ESC30	BC30P12KS	39	FM01-2500-AC	6910-448-108	39
ESC30	BC30P12KW1	39	FM01-500-AC	6910-448-104	39
ESC30	BC30P12KW2	39	FM01-5000-AC	6910-448-110	39
ESC30	BC30P16KS	39	FM02-10K-AC	6910-448-112	39
ESC30	BC30P16KW1	39	I/P TRANSDUCER	6910-101-066	47
ESC30	BC30P16KW2	39	MB1	MB1-316	100
ESC30	BC30P20KS	39	MB1. 5	MB1.5-14	100
ESC30	BC30P20KW1	39	MB2	MB2-14	100
ESC30	BC30P20KW2	39	MB3	MB3-38	100
ESC30	BC30P23KS	39	MB4	MB4-58	100
ESC30	BC30P23KW1	39	MB5	MB5-1	100
ESC30	BC30P23KW2	39	MB5. 5	MB5.5-1	100
ESC30	BC30T12KS	39	MB6	MB6-1	100
ESC30	BC30T12KW1	39	MB9	MB9-1	100
ESC30	BC30T12KW2	39	MC1. 5	MC1.5-14	100
ESC30	BC30T16KS	39	MC2	MC2-14	100
ESC30	BC30T16KW1	39	MC3	MC3-38	100
ESC30	BC30T16KW2	39	MC4	MC4-12	100
ESC30	BC30T20KS	39	MC4	MC4-38	100
ESC30	BC30T20KW1	39	MC4	MC4-58	100
ESC30	BC30T20KW2	39	MC5	MC5-1	100
ESC30	BC30T23KS	39	MC5	MC5-12	100
ESC30	BC30T23KW1	39	MC5	MC5-34	100
ESC30	BC30T23KW2	39	MC5	MC5-38	100
ESC30	BC30U12KS	39	MC5	MC5-58	100
ESC30	BC30U12KW1	39	MC5	MC5-78	100
ESC30	BC30U12KW2	39	MC5. 5	MC5-1	100
ESC30	BC30U16KS	39	MC5. 5	MC5.5-34	100
ESC30	BC30U16KW1	39	MC5. 5	MC5.5-58	100
ESC30	BC30U16KW2	39	MC5. 5	MC5.5-78	100
ESC30	BC30U20KS	39	MC6	MC6-1	100
ESC30	BC30U20KW1	39	MC6	MC6-34	100
ESC30	BC30U20KW2	39	MC6	MC6-58	100
ESC30	BC30U23KS	39	MC6	MC6-78	100
ESC30	BC30U23KW1	39	MC9	MC9-114	100
ESC30	BC30U23KW2	39	MC9	MC9-118	100
ESC30	BC30W12KS	39	MC9	MC9-34	100
ESC30	BC30W12KW1	39	MC9	MC9-78	100
ESC30	BC30W12KW2	39	MC9-58	MC9-58	100
ESC30	BC30W16KS	39	MCS 2000-PS	6910-448-091	47
ESC30	BC30W16KW1	39	MCS 204	6910-448-017	57
ESC30	BC30W16KW2	39	MCS-166	6910-448-013	65
ESC30	BC30W20KS	39	MCS-203	6910-448-014	61
ESC30	BC30W20KW1	39	MCS-207	6910-448-066	63
ESC30	BC30W20KW2	39	MCS-208	6910-448-067	59
ESC30	BC30W23KS	39	MCS2000-CBL	6910-101-095	47
ESC30	BC30W23KW1	39	MCS2000-CRD	6910-101-091	47
ESC30	BC30W23KW2	39	MCS2000-CTDA	6910-448-120	47
ESC30	BC30X12KS	39	MCS2000-CTLC	6910-448-121	47
ESC30	BC30X12KW1	39	MCS2000-DP	6910-101-093	47
ESC30	BC30X12KW2	39	MCS2000-DRV	6910-448-092	47
ESC30	BC30X16KS	39	MCS2000-DRVH	6910-448-095	47

Index

By Model Number

Model Number	Part Number	Page	Model Number	Part Number	Page
MCS2000-ECA	6910-448-096	47	PSAC10	PSAC10	39
MCS2000-IS	6910-101-092	47	PTB10 BL3	5401-169-161	117
MCS2000-PRG	6910-101-090	47	PTB2.5 BL3	5401-169-141	117
MCS2000-PSDRV	6910-448-093	47	PTB20 BL3	5401-169-171	117
MCS2000-PSDRVH	6910-448-094	47	PTB5 BL3	5401-169-151	117
MCS2000-PSH	6910-448-098	47	STATE SWITCH	6910-101-007	65
MCS2000-WIN	6910-101-096	47	TB-1000	5312-1	72
MPB120-1	MPB120-1-24	116	TB-1000	5312-24	72
MPB120-1	MPB120-1-90	116	TB-1225	5313-1	72
MPB120-2	MPB120-2-24	116	TB-1225	5313-24	72
MPB120-2	MPB120-2-90	116	TB-1525	5314-1	72
MPB15-1	MPB15-1-24	116	TB-1525	5314-24	72
MPB15-1	MPB15-1-90	116	TB-170	5375-1	72
MPB15-2	MPB15-2-24	116	TB-170	5375-2	72
MPB15-2	MPB15-2-90	116	TB-170	5375-3	72
MPB15-3	MPB15-3-24	116	TB-170	5375-4	72
MPB15-3	MPB15-3-90	116	TB-170	5375-5	72
MPB2-1	MPB2-1-24	116	TB-170	5375-6	72
MPB2-1	MPB2-1-90	116	TB-260	5365-10	72
MPB240-1	MPB240-1-24	116	TB-260	5365-11	72
MPB240-1	MPB240-1-90	116	TB-260	5365-12	72
MPB240-2	MPB240-2-24	116	TB-260	5365-2	72
MPB240-2	MPB240-2-90	116	TB-260	5365-3	72
MPB240-3	MPB240-3-24	116	TB-260	5365-5	72
MPB240-3	MPB240-3-90	116	TB-260	5365-6	72
MPB70-1	MPB70-1-24	116	TB-260	5365-8	72
MPB70-1	MPB70-1-90	116	TB-260	5365-9	72
MPB70-2	MPB70-2-24	116	TB-425	5367-10	72
MPB70-2	MPB70-2-90	116	TB-425	5367-11	72
MPC 2	MPC2-1-24	123	TB-425	5367-12	72
MPC 2	MPC2-1-90	123	TB-425	5367-5	72
MPC120	MPC120-1-24	123	TB-425	5367-6	72
MPC120	MPC120-1-90	123	TB-425	5367-7	72
MPC15	MPC15-1-24	123	TB-425	5367-8	72
MPC15	MPC15-1-90	123	TB-425	5367-9	72
MPC70	MPC 70-1-90	123	TB-500	5310-2	72
MPC70	MPC70-1-24	123	TB-500	5310-24	72
MTB I		87	TB-825	5311-2	72
MTB II		87	TB-825	5311-24	72
NG24	7430-448-003	153	TCS 200	6910-448-055	56
P/M HOUSING	6910-448-015	66	TCS 200-1	6910-448-086	56
P/M HOUSING	6910-448-018	66	TCS 200-1H	6910-448-087	56
P/M HOUSING	6910-448-028	66	TCS-167	6910-448-025	65
PHCO.6R	5401-270-321	124	TCS-168	6910-448-032	65
PHC1.2R	5401-270-331	124	TCS-210	6910-448-026	62
PHC10R	5401-270-361	124	TCS-220	6910-448-027	58
PHC2.5R	5401-270-341	124	TCS-310	6910-448-042	64
PHC20R	5401-270-371	124	TCS-320	6910-448-043	60
PHC5R	5401-270-351	124	TCS-605-1	7330-448-002	37
PMC 10	5401-270-111	121	TCS-605-5	7330-448-003	37
PMC 20	5401-270-121	121	TCS-605-NC1	7330-448-005	37
PMC 40	5401-270-131	122	TCS605-1	7330-448-002	37
POB 0.3	5401-169-211	119	TCS605-2	7330-448-004	37
POB 0.6	5401-169-221	119	TCS605-5	7330-448-003	37
POB 1.2	5401-169-231	119	UT30UP-DCA4-1016-CSI	7600-448-001	153
POB 10	5401-169-261	119	UT30UP-DCA4-2032-CSI	7600-448-002	153
POB 2.5	5401-169-241	119	W/S HOUSING	6910-448-016	66
POB 20	5401-169-271	119	W/S HOUSING	$6910-448-019$	66
POB 40	5401-169-281	119	W/S HOUSING	6910-448-029	66
POB 5	5401-169-251	119			
POB 80	5401-169-291	119			
POCO. 3	5401-270-211	126			
POC0.6	5401-270-221	126			
POC1. 2	5401-270-231	126			
POC10	5401-270-261	126			
POC2.5	5401-270-241	126			
P0C20	5401-270-271	126			
POC40	5401-270-281	126			
P0C5	5401-270-251	126			
P0C80	5401-270-291	126			
PRB1.2H	5401-169-331	120			
PRB10H	5401-169-361	120			
PRB2.5H	5401-169-341	120			
PRB20H	5401-169-371	120			
PRB5H	5401-169-351	120			

Warner Electric

Electromagnetic Clutches and Brakes - USA
South Beloit, IL 61080
815-389-3771
For application assistance: 1-800-825-9050

Electromagnetic Clutches and Brakes - Europe
St Barthelemy d'Anjou, France +33 (0)2 41212424

For sales office:
+33 (0)2 41212476
Precision Electric Coils and Electromagnetic Clutches and Brakes - USA
Columbia City, IN 46725 260-244-6183

Inertia Dynamics

Spring Set Brakes; Power On and Wrap Spring Clutch/Brakes
Torrington, CT 06790 860-482-4444

Matrix International

Electromagnetic Clutches and Brakes, Pressure Operated Clutches and Brakes
Brechin, Scotland +44 (0) 1356602000

Warner Linear

Linear Actuators and Guideways - USA
Belvidere, IL 61008 815-547-1106

For application assistance: $1-800-825-9050$

Boston Gear

Enclosed and Open Gearing Electrical and Mechanical P.T Components, Precision Gearheads, Precision Couplings
Quincy, MA 02171
617-328-3300
For customer service: 1-888-999-9860

For application assistance: 1-800-816-5608

Huco Dynatork

Precision Couplings and Air Motors
Hertford, England +44 (0) 1992501900

Formsprag Clutch

Overrunning Clutches and Holdbacks
Warren, MI 48089 586-758-5000

For application assistance: 1-800-927-3262

Marland Clutch

Roller Ramp and Sprag Type Overrunning Clutches and Backstops
Burr Ridge, IL 60527
630-455-1752

Stieber Clutch

Overrunning Clutches and Holdbacks
Heidelberg, Germany +49 (0)6221 30470

Wichita Clutch and Industrial Clutch
Pneumatic and Oil Immersed Clutches and Brakes - USA
Wichita Falls, TX 76302 940-723-3400

Pneumatic Clutches and Brakes - Europe

Bedford, England
+44 (0)1234 350311

Twiflex Limited

Caliper Brakes and Thrusters
Twickenham, England
+44 (0) 2088941161

Ameridrives Couplings

Gear Couplings, Mill Spindles, Universal Joints
Erie, PA 16512
814-480-5000

Bibby Transmissions

Disc, Gear, Grid Couplings, Overload Clutches
Dewsbury, England +44 (0) 1924460801

Nuttall Gear and Delroyd Worm Gear

Worm Gear and
Helical Speed Reducers
Niagara Falls, NY 14302
716-298-4100

Saftek Friction

Non-asbestos Brake and Clutch Materials
Telford, England
+44 (0) 1952581122

Altra Industrial Motion -

 Asia Pacific and AfricaChina $\quad 85226159313$
Taiwan 886225778156

Singapore 654874464
Thailand
6623220481
Australia 61298940133
S. Africa 27119184270

Warner Electric

449 Gardner Street • South Beloit, IL 61080
815-389-3771 • Fax: 815-389-2582
www.warnerelectric.com

[^0]: * If additional application data is pertinent, please use second sheet.

[^1]: *For new applications, we recommend the TCS-200-1 or TCS-200-1H.

[^2]: Requires enclosure, see page 66.

[^3]: See page 155 for specific bushing part numbers.
 For replacement parts list and exploded view drawing, see page 77 .

[^4]: * See page 155 for specific shaft sizes and bushing numbers.

 These units, when used with the correct Warner Electric conduit box, meet the standards of UL-508 and are listed under the guide card \#NMTR, file \#59164 and are CSA Certified under file \#LR11543.

[^5]: 1) Two of each required for each brake magnet
 (2) Includes magnet carrier (4 \& 5) mounting hardware.
 (3) Includes magnet mounting hardware, bracket mounting bolts and spacers.
 (4) HICO friction pads can be identified by orange paint mark near wear notch.
[^6]: (1) Two of each required for each brake magnet.
 (2) Includes magnet carrier (3 \& 4) mounting hardware.
 (3) Includes magnet mounting hardware, bracket mounting bolts and spacers.

 Browning is a registered trademark of Emerson Electric Co.

[^7]: * Thumb screw adjustment
 ** Spanner wrench required for adjustment. Spanner wrench P/N YZOO-0007

[^8]: *Adjacent symbol denotes shape of blower.

[^9]: * Lower minimum torques possible with appropriate control.

[^10]: *Both Rotor and Hub Rotate

[^11]: "T" Designates high coefficient friction material. Available as an option upon request.

 * Max Speed is with standard friction plate. A high speed friction plate capable of 50% higher speed is available.

 Thermal capacity is reduced with high speed friction plate to 60% of values shown on thermal curves.

[^12]: ${ }^{1}$ Minimum torques were calculated using a multiplier of 0.6 for LC times Standard.
 ${ }^{2}$ LC - Low Coefficient based on 0.2 Coefficient of friction.
 ${ }^{3}$ Standard based on 0.35 Coefficient of friction.
 ${ }^{4}$ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.
 ${ }^{5}$ Limit LC to 70% of heat capacity.
 ${ }^{6}$ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

[^13]: ${ }^{1}$ Minimum torques were calculated using a multiplier of 0.6 for LC times Standard.
 ${ }^{2}$ LC - Low Coefficient based on 0.2 Coefficient of friction.
 ${ }^{3}$ Standard based on 0.35 Coefficient of friction.
 ${ }^{4}$ Max. speed is with standard brake disc. A high speed brake disc capable of 50% higher speed is also available. Heat Capacity reduced by 10% when high speed disc is used.
 ${ }^{5}$ Limit LC to 70% of heat capacity.
 ${ }^{6}$ When selecting number of actuators, use a limit of 3.35 HP per actuator pair (2.5 kW per Actuator pair) for duty w/o fan and 3.75 HP per Actuator pair (2.8 kW per Actuator pair) when fan cooled.

